IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223029158.html
   My bibliography  Save this article

Optical efficiency of parabolic troughs with a secondary flat reflector; effects of non-ideal primary mirrors

Author

Listed:
  • Rodriguez-Sanchez, David
  • Rosengarten, Gary

Abstract

Secondary flat receivers enhance concentration of parabolic trough collectors with cylindrical receivers. An increase of 70 % was possible for commercial primary mirrors while allowing the optical efficiency to be less sensitive to misalignments. Including the secondary flat reflector close to a parabolic-trough receiver may, however, reduce the optical efficiency of the trough due to the shadow projected. In this work ray-tracing simulations were conducted to compare the optical efficiency and the misalignment sensitivity of the standard absorber and its secondary flat reflector variation. In some cases, the required dimensions for the secondary flat reflector would make it a non-realistic solution due to the impossibility of encapsulating it within a glass cover. To overcome this issue, a truncated version of the secondary mirror is proposed and evaluated. A truncated secondary flat reflector will decrease the deleterious effects of the shading, enhancing concentration further but changing the tolerance to misalignments of the troughs. Analysis of two benchmark primary mirrors shows a worst-case scenario of optical efficiency reductions less than 3.5 and 2 %, with concentration increases of 20 and 80 % respectively. The reduction on absorber size offsets the lower optical efficiency by the reduction of radiation losses, especially for high-temperature applications.

Suggested Citation

  • Rodriguez-Sanchez, David & Rosengarten, Gary, 2024. "Optical efficiency of parabolic troughs with a secondary flat reflector; effects of non-ideal primary mirrors," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223029158
    DOI: 10.1016/j.energy.2023.129521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grena, Roberto & Tarquini, Pietro, 2011. "Solar linear Fresnel collector using molten nitrates as heat transfer fluid," Energy, Elsevier, vol. 36(2), pages 1048-1056.
    2. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    3. Facão, Jorge & Oliveira, Armando C., 2011. "Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator," Renewable Energy, Elsevier, vol. 36(1), pages 90-96.
    4. Rodriguez-Sanchez, David & Rosengarten, Gary, 2015. "Improving the concentration ratio of parabolic troughs using a second-stage flat mirror," Applied Energy, Elsevier, vol. 159(C), pages 620-632.
    5. Bakos, G. C. & Ioannidis, I. & Tsagas, N. F. & Seftelis, I., 2001. "Design, optimisation and conversion-efficiency determination of a line-focus parabolic-trough solar-collector (PTC)," Applied Energy, Elsevier, vol. 68(1), pages 43-50, January.
    6. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Hu, En-yi & Xu, Zhi-cheng & Liu, Guang-peng & Li, Guo-shuai, 2020. "Improving the performance of a 2-stage large aperture parabolic trough solar concentrator using a secondary reflector designed by adaptive method," Renewable Energy, Elsevier, vol. 152(C), pages 23-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, M.K. & Kaushik, S.C. & Ranjan, K.R. & Panwar, N.L. & Reddy, V. Siva & Tyagi, S.K., 2015. "Thermodynamic performance evaluation of solar and other thermal power generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 567-582.
    2. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Halimi, Mohammed & El Amrani, Aumeur & Messaoudi, Choukri, 2021. "New experimental investigation of the circumferential temperature uniformity for a PTC absorber," Energy, Elsevier, vol. 234(C).
    4. Hao, Menghao & Chen, Lizhi & Chen, Jianxun & Lu, Luyi & Li, Jianlan, 2022. "Safety and efficiency assessment of absorber with an initial offset in a parabolic trough collector," Renewable Energy, Elsevier, vol. 187(C), pages 774-789.
    5. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling & Qiu, Yu, 2018. "A novel optical optimization model for linear Fresnel reflector concentrators," Renewable Energy, Elsevier, vol. 129(PA), pages 486-499.
    6. Vouros, Alexandros & Mathioulakis, Emmanouil & Papanicolaou, Elias & Belessiotis, Vassilis, 2019. "On the optimal shape of secondary reflectors for linear Fresnel collectors," Renewable Energy, Elsevier, vol. 143(C), pages 1454-1464.
    7. Balaji, Shanmugapriya & Reddy, K.S. & Sundararajan, T., 2016. "Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors," Applied Energy, Elsevier, vol. 179(C), pages 1138-1151.
    8. Barbón, A. & López-Smeetz, C. & Bayón, L. & Pardellas, A., 2020. "Wind effects on heat loss from a receiver with longitudinal tilt angle of small-scale linear Fresnel reflectors for urban applications," Renewable Energy, Elsevier, vol. 162(C), pages 2166-2181.
    9. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    10. Reddy, K.S. & Balaji, Shanmugapriya & Sundararajan, T., 2018. "Estimation of heat losses due to wind effects from linear parabolic secondary reflector –receiver of solar LFR module," Energy, Elsevier, vol. 150(C), pages 410-433.
    11. Abbas, R. & Martínez-Val, J.M., 2015. "Analytic optical design of linear Fresnel collectors with variable widths and shifts of mirrors," Renewable Energy, Elsevier, vol. 75(C), pages 81-92.
    12. Qiu, Yu & He, Ya-Ling & Wu, Ming & Zheng, Zhang-Jing, 2016. "A comprehensive model for optical and thermal characterization of a linear Fresnel solar reflector with a trapezoidal cavity receiver," Renewable Energy, Elsevier, vol. 97(C), pages 129-144.
    13. Ma, Jun & Wang, Cheng-Long & Zhou, Yuan & Wang, Rui-Dong, 2021. "Optimized design of a linear Fresnel collector with a compound parabolic secondary reflector," Renewable Energy, Elsevier, vol. 171(C), pages 141-148.
    14. Tang, X.Y. & Yang, W.W. & Yang, Y. & Jiao, Y.H. & Zhang, T., 2021. "A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution," Energy, Elsevier, vol. 229(C).
    15. Ben Taher, M.A. & Pelay, U. & Russeil, S. & Bougeard, D., 2023. "A novel design to optimize the optical performances of parabolic trough collector using Taguchi, ANOVA and grey relational analysis methods," Renewable Energy, Elsevier, vol. 216(C).
    16. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    18. Bernardos, Eva & López, Ignacio & Rodríguez, Javier & Abánades, Alberto, 2013. "Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles," Energy Policy, Elsevier, vol. 62(C), pages 99-106.
    19. Andrade, L.A. & Barrozo, M.A.S. & Vieira, L.G.M., 2016. "A study on dynamic heating in solar dish concentrators," Renewable Energy, Elsevier, vol. 87(P1), pages 501-508.
    20. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223029158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.