IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223014147.html
   My bibliography  Save this article

A new method of generating extreme building energy year and its application

Author

Listed:
  • Li, Honglian
  • Zhang, Tiantian
  • Wang, An
  • Wang, Mengli
  • Huang, Jin
  • Hu, Yao

Abstract

In the early stage of building design, typical meteorological year (TMY) used for building energy consumption simulation which mainly representing average conditions, cannot reflect the building energy consumption under extreme weather conditions. Intensified climate change leads to global warming and frequent extreme events, therefore, generating meteorological years for simulating building energy consumption under extreme weather conditions is desperately needed. In this paper, a new method for generating extreme weather years—An extreme building energy year (EBEY) is proposed, which not only considers the influence of various meteorological parameters on building energy consumption, but also calculates the extreme intensity and occurrence time of multiple parameters using dynamic thresholds. The results show that the accuracy of using EBEY to simulate building energy consumption under extreme weather conditions is better than that of temperature-only extreme years, radiation-only extreme years, extreme meteorological years (EMY), typical cold years (TCY) and typical hot years (THY). In addition, this study verifies that combining TMY and EBEY data reduces the number of simulations without losing the accuracy of the simulation results.

Suggested Citation

  • Li, Honglian & Zhang, Tiantian & Wang, An & Wang, Mengli & Huang, Jin & Hu, Yao, 2023. "A new method of generating extreme building energy year and its application," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014147
    DOI: 10.1016/j.energy.2023.128020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
    2. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Narowski & Dariusz Heim & Maciej Mijakowski, 2024. "New External Design Temperatures and Geospatial Models for Poland and Central Europe for Building Heat Load Calculations," Energies, MDPI, vol. 17(16), pages 1-21, August.
    2. Li, Honglian & He, Xi & Hu, Yao & Lv, Wen & Yang, Liu, 2024. "Research on the generation method of missing hourly solar radiation data based on multiple neural network algorithm," Energy, Elsevier, vol. 287(C).
    3. Zhang, Wenhao & Li, Honglian & Wang, Mengli & Lv, Wen & Huang, Jin & Yang, Liu, 2024. "Enhancing typical Meteorological Year generation for diverse energy systems: A hybrid Sandia-machine learning approach," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolina Rodriguez & María Coronado & Marta D’Alessandro & Juan Medina, 2019. "The Importance of Standardised Data-Collection Methods in the Improvement of Thermal Comfort Assessment Models for Developing Countries in the Tropics," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    2. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    3. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    4. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    5. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    6. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    7. Mukhtar, A. & Ng, K.C. & Yusoff, M.Z., 2018. "Design optimization for ventilation shafts of naturally-ventilated underground shelters for improvement of ventilation rate and thermal comfort," Renewable Energy, Elsevier, vol. 115(C), pages 183-198.
    8. Girish Rentala & Yimin Zhu & Neil M. Johannsen, 2021. "Impact of Outdoor Temperature Variations on Thermal State in Experiments Using Immersive Virtual Environment," Sustainability, MDPI, vol. 13(19), pages 1-36, September.
    9. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    10. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.
    11. Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.
    12. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    13. Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva & Osvaldo José Venturini, 2023. "On the Summarization of Meteorological Data for Solar Thermal Power Generation Forecast," Energies, MDPI, vol. 16(7), pages 1-10, April.
    14. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    15. Shady Attia, 2020. "Spatial and Behavioral Thermal Adaptation in Net Zero Energy Buildings: An Exploratory Investigation," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    16. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    17. Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
    18. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Jiayi Shi & Tao Zhang & Hiroatsu Fukuda & Qun Zhang & Lujian Bai, 2022. "Socio-Environmental Responsive Strategy and Sustainable Development of Traditional Tianshui Dwellings," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
    20. Magnouréwa Josiane Tossim & Parfait Altolnan Tombar & Sinko Banakinao & Célestin Adeito Mavunda & Tchakouni Sondou & Cyprien Coffi Aholou & Yawovi Mawuénya Xolali Dany Ayité, 2024. "Analysis of the Choice of Cement in Construction and Its Impact on Comfort in Togo," Sustainability, MDPI, vol. 16(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.