IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p2990-d1106877.html
   My bibliography  Save this article

A New Method for Determining Outdoor Humidity Ratio of Natatorium in Transition Season

Author

Listed:
  • Jiaxiang Lei

    (School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Honglian Li

    (School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
    State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Chengwang Li

    (School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)

  • Minrui Xu

    (School of Environment, Education and Development, The University of Manchester, Manchester M1 5GD, UK)

Abstract

The natatorium’s ventilation problem receives much concern because of its large wet load. The outdoor humidity ratio in transition season is the basic design parameter of the ventilation calculation, directly affecting the rationality of architectural design. At present, the ventilation-curve (V-C) method is the most widely used method to determine the outdoor humidity ratio in the transition season in China. However, due to failing to reflect non-guaranteed hours, the rationality of this value is difficult to assess by employing this approach. This paper presents a new method, the typical transition season method (TTS), for determining the outdoor humidity ratio in the transition season of a natatorium. The TTS method selects the transition season based on the typical meteorological year (TMY) data and calculates the outdoor humidity ratio with multiple non-guaranteed hours. This can well-represent the local perennial climate characteristics and clearly reflect the non-guaranteed hours. In this study, through selecting six typical representative cities in China, the evaluation of the outdoor humidity ratio is achieved through calculating ventilation volume and air change rate, verifying the rationality of this method. The results show that the humidity ratio obtained by the V-C method is lower than that obtained by the TTS method at about 2 g/kg without guarantee of 200 h humidity ratio, and even that the maximum difference is 6.64 g/kg. Meanwhile, the validation results of the ventilation calculation show that the humidity ratio determined by the V-C method cannot meet the minimum design requirements in five cities, while the humidity ratio obtained by the TTS method cannot meet the requirements in only one city.

Suggested Citation

  • Jiaxiang Lei & Honglian Li & Chengwang Li & Minrui Xu, 2023. "A New Method for Determining Outdoor Humidity Ratio of Natatorium in Transition Season," Energies, MDPI, vol. 16(7), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2990-:d:1106877
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/2990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/2990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2016. "Solid desiccant air conditioning – A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1451-1469.
    2. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    3. Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
    4. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    5. Sun, Jingting & Li, Zhengrong & Xiao, Fu & Xiao, Jianzhuang, 2020. "Generation of typical meteorological year for integrated climate based daylight modeling and building energy simulation," Renewable Energy, Elsevier, vol. 160(C), pages 721-729.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Honglian & He, Xi & Hu, Yao & Lv, Wen & Yang, Liu, 2024. "Research on the generation method of missing hourly solar radiation data based on multiple neural network algorithm," Energy, Elsevier, vol. 287(C).
    2. Zhang, Wenhao & Li, Honglian & Wang, Mengli & Lv, Wen & Huang, Jin & Yang, Liu, 2024. "Enhancing typical Meteorological Year generation for diverse energy systems: A hybrid Sandia-machine learning approach," Renewable Energy, Elsevier, vol. 225(C).
    3. Jahns, Christopher & Osinski, Paul & Weber, Christoph, 2023. "A statistical approach to modeling the variability between years in renewable infeed on energy system level," Energy, Elsevier, vol. 263(PA).
    4. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    6. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    7. Hwang, Won-Baek & Choi, Sun & Lee, Dae-Young, 2017. "In-depth analysis of the performance of hybrid desiccant cooling system incorporated with an electric heat pump," Energy, Elsevier, vol. 118(C), pages 324-332.
    8. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    9. Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva & Osvaldo José Venturini, 2023. "On the Summarization of Meteorological Data for Solar Thermal Power Generation Forecast," Energies, MDPI, vol. 16(7), pages 1-10, April.
    10. Putra, I Dewa Gede Arya & Nimiya, Hideyo & Sopaheluwakan, Ardhasena & Kubota, Tetsu & Lee, Han Soo & Pradana, Radyan Putra & Alfata, Muhammad Nur Fajri & Perdana, Reza Bayu & Permana, Donaldi Sukma & , 2024. "Development of typical meteorological years based on quality control of datasets in Indonesia," Renewable Energy, Elsevier, vol. 221(C).
    11. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    12. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    13. Fong, K.F. & Lee, C.K., 2019. "Performance investigation of a SOFC-primed micro-combined hybrid cooling and power system in hot and humid regions," Energy, Elsevier, vol. 189(C).
    14. Sujuan Li & Jiaguo Liu & Xiyuan Hu, 2023. "A three-dimensional evaluation model for green development: evidence from Chinese provinces along the belt and road," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11557-11581, October.
    15. Ying Xu & Meiyan Wang & Yicheng Xu & Xin Li & Yun Wu & Fang’ai Chi, 2023. "Evaluation System Creation and Application of “Zero-Pollution Village” Based on Combined FAHP-TOPSIS Method: A Case Study of Zhejiang Province," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    16. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Meiyan Wang & Chen Chen & Bingxin Fan & Zilu Yin & Wenxuan Li & Huifang Wang & Fang’ai Chi, 2023. "Multi-Objective Optimization of Envelope Design of Rural Tourism Buildings in Southeastern Coastal Areas of China Based on NSGA-II Algorithm and Entropy-Based TOPSIS Method," Sustainability, MDPI, vol. 15(9), pages 1-27, April.
    18. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
    20. Remizov, Alexey & Memon, Shazim Ali & Kim, Jong R., 2024. "Novel building energy performance-based climate zoning enhanced with spatial constraint," Applied Energy, Elsevier, vol. 355(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2990-:d:1106877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.