IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223027275.html
   My bibliography  Save this article

Optimizing mixed cool thermal storage systems across a connected community

Author

Listed:
  • Heine, Karl
  • Tabares-Velasco, Paulo Cesar
  • Deru, Michael

Abstract

A high level of electric demand flexibility must be integrated into our building infrastructure to enable greater renewable energy penetration in the grid. In the U.S., 9 % of electricity generated is used to cool buildings in a periodic manner, making this end-use an ideal target for active management through cool thermal energy storage (CTES) technologies. Historic uses for CTES are designed around central chilled water plants, but these systems cool less than 25 % of U.S. commercial floorspace. Emerging technologies are under development to serve the many smaller distributed cooling systems, such as rooftop units (RTUs), and have the potential to add CTES to an additional 66 % of cooled commercial floorspace. However, these unitary thermal storage systems (UTSS) lack the modeling and analysis tools to evaluate them in the future interactive grid context. This study develops the modeling and optimization tools necessary to simultaneously examine central and distributed ice storage systems within the multi-building, connected community context. An integrated simulation-optimization workflow is created to allow for rapid customized analysis. Results demonstrate the energy and flexibility tradeoffs of various implementations.

Suggested Citation

  • Heine, Karl & Tabares-Velasco, Paulo Cesar & Deru, Michael, 2023. "Optimizing mixed cool thermal storage systems across a connected community," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027275
    DOI: 10.1016/j.energy.2023.129333
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223027275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zekai Şen & Eyüp Şişman & Ismail Dabanli, 2020. "Wet and dry spell feature charts for practical uses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 1975-1986, December.
    2. Cox, Sam J. & Kim, Dongsu & Cho, Heejin & Mago, Pedro, 2019. "Real time optimal control of district cooling system with thermal energy storage using neural networks," Applied Energy, Elsevier, vol. 238(C), pages 466-480.
    3. Ruan, Yingjun & Liu, Qingrong & Li, Zhengwei & Wu, Jiazheng, 2016. "Optimization and analysis of Building Combined Cooling, Heating and Power (BCHP) plants with chilled ice thermal storage system," Applied Energy, Elsevier, vol. 179(C), pages 738-754.
    4. Hao, Ling & Wei, Mingshan & Xu, Fei & Yang, Xiaochen & Meng, Jia & Song, Panpan & Min, Yong, 2020. "Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization," Applied Energy, Elsevier, vol. 261(C).
    5. Balzanelli GM & Distratis P & Amatulli F & Catucci O & Cefalo A & D’Angela G & Lazzaro R & Palazzo D & Aityan KS & Dipalma G & Inchingolo F & Nguyen KCD & Pham HV & Tomassone D & Tran Cong T & Gargi, 2020. "Clinical Features in Predicting COVID-19," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 29(5), pages 22921-22926, August.
    6. Kamal, Rajeev & Moloney, Francesca & Wickramaratne, Chatura & Narasimhan, Arunkumar & Goswami, D.Y., 2019. "Strategic control and cost optimization of thermal energy storage in buildings using EnergyPlus," Applied Energy, Elsevier, vol. 246(C), pages 77-90.
    7. Perevoznikov E. N., 2020. "Spectral Features of Systems With Chaotic Dynamics," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 6(6), pages 58-65, 06-2020.
    8. Tommy K. Y. Cheung & Simon K. C. Cheung, 2020. "Spatial dependence model with feature difference," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 615-627, July.
    9. Cole, Wesley J. & Rhodes, Joshua D. & Gorman, William & Perez, Krystian X. & Webber, Michael E. & Edgar, Thomas F., 2014. "Community-scale residential air conditioning control for effective grid management," Applied Energy, Elsevier, vol. 130(C), pages 428-436.
    10. Chan, Apple L.S. & Chow, Tin-Tai & Fong, Square K.F. & Lin, John Z., 2006. "Performance evaluation of district cooling plant with ice storage," Energy, Elsevier, vol. 31(14), pages 2750-2762.
    11. Mazzoni, Stefano & Sze, Jia Yin & Nastasi, Benedetto & Ooi, Sean & Desideri, Umberto & Romagnoli, Alessandro, 2021. "A techno-economic assessment on the adoption of latent heat thermal energy storage systems for district cooling optimal dispatch & operations," Applied Energy, Elsevier, vol. 289(C).
    12. Barbour, Edward & Parra, David & Awwad, Zeyad & González, Marta C., 2018. "Community energy storage: A smart choice for the smart grid?," Applied Energy, Elsevier, vol. 212(C), pages 489-497.
    13. Heine, Karl & Tabares-Velasco, Paulo Cesar & Deru, Michael, 2021. "Design and dispatch optimization of packaged ice storage systems within a connected community," Applied Energy, Elsevier, vol. 298(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heine, Karl & Tabares-Velasco, Paulo Cesar & Deru, Michael, 2021. "Design and dispatch optimization of packaged ice storage systems within a connected community," Applied Energy, Elsevier, vol. 298(C).
    2. Jia, Lizhi & Liu, Junjie & Chong, Adrian & Dai, Xilei, 2022. "Deep learning and physics-based modeling for the optimization of ice-based thermal energy systems in cooling plants," Applied Energy, Elsevier, vol. 322(C).
    3. Zhao, Yaohua & Liu, Zichu & Quan, Zhenhua & Jing, Heran & Yang, Mingguang, 2022. "Experimental investigation and multi-objective optimization of ice thermal storage device with multichannel flat tube," Renewable Energy, Elsevier, vol. 195(C), pages 28-46.
    4. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    5. Liu, Zichu & Quan, Zhenhua & Zhang, Nan & Wang, Yubo & Yang, Mingguang & Zhao, Yaohua, 2023. "Energy and exergy analysis of a novel direct-expansion ice thermal storage system based on three-fluid heat exchanger module," Applied Energy, Elsevier, vol. 330(PB).
    6. Fanghan Su & Zhiyuan Wang & Yue Yuan & Chengcheng Song & Kejun Zeng & Yixing Chen & Rongpeng Zhang, 2023. "Enhanced Operation of Ice Storage System for Peak Load Management in Shopping Malls across Diverse Climate Zones," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    7. Neri, Manfredi & Guelpa, Elisa & Verda, Vittorio, 2022. "Design and connection optimization of a district cooling network: Mixed integer programming and heuristic approach," Applied Energy, Elsevier, vol. 306(PA).
    8. Zhang, Wei & Hong, Wenpeng & Jin, Xu, 2022. "Research on performance and control strategy of multi-cold source district cooling system," Energy, Elsevier, vol. 239(PB).
    9. Filip Vrbanc & Mario Vašak & Vinko Lešić, 2023. "Simple and Accurate Model of Thermal Storage with Phase Change Material Tailored for Model Predictive Control," Energies, MDPI, vol. 16(19), pages 1-18, September.
    10. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    11. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    12. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    13. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    14. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    15. Chan, Lok Shun, 2022. "Neighbouring shading effect on photovoltaic panel system: Its implication to green building certification scheme," Renewable Energy, Elsevier, vol. 188(C), pages 476-490.
    16. Aghamolaei, Reihaneh & Shamsi, Mohammad Haris & O’Donnell, James, 2020. "Feasibility analysis of community-based PV systems for residential districts: A comparison of on-site centralized and distributed PV installations," Renewable Energy, Elsevier, vol. 157(C), pages 793-808.
    17. Powell, Kody M. & Kim, Jong Suk & Cole, Wesley J. & Kapoor, Kriti & Mojica, Jose L. & Hedengren, John D. & Edgar, Thomas F., 2016. "Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market," Energy, Elsevier, vol. 113(C), pages 52-63.
    18. Fan Li & Jingxi Su & Bo Sun, 2023. "An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm," Energies, MDPI, vol. 16(9), pages 1-22, April.
    19. Fioriti, Davide & Frangioni, Antonio & Poli, Davide, 2021. "Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role and business model of aggregators and users," Applied Energy, Elsevier, vol. 299(C).
    20. Henni, Sarah & Staudt, Philipp & Weinhardt, Christof, 2021. "A sharing economy for residential communities with PV-coupled battery storage: Benefits, pricing and participant matching," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.