IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics036054422302577x.html
   My bibliography  Save this article

Data-driven method for optimized supply temperatures in residential buildings

Author

Listed:
  • Pothof, I.
  • Vreeken, D.
  • Meerkerk, M. van

Abstract

The energy required for space heating amounts to approximately 68% of the total energy demand of existing buildings in Europe. The heat requirement of a building, and thus its carbon emission, can be lowered by optimizing the supply and return temperature of the heating system. A lower supply temperature enables a wider variety of transition pathways towards sustainable heating with reduced carbon emissions. However, the minimum supply temperature that guarantees acceptable indoor temperatures in existing dwellings during design weather conditions is still unknown. In this study, we determine the minimum supply temperature by fitting a 2 R–2C model to hourly measurement data. The measurement data is obtained from a representative set of 220 existing gas-fired dwellings in the Netherlands. The heating system of each dwelling was equipped with a pulse flowmeter and temperature sensors on both the supply and return side. Additionally, data was collected from the thermostat in the main living room and the gas boiler. The data was supplemented with weather data from a nearby weather station. The data-driven model shows that the minimum supply temperature can be lower than 55 °C for 60% of the dwellings during design weather conditions (i.e., −10 °C in the Netherlands). Moreover, the minimum supply temperature is poorly correlated with general building properties, such as the building typology, construction period or specific annual space heating demand (kWh/(m2yr)). On the contrary, the ratio between the required and installed heat output of the radiators in the heating system is a promising parameter to predict the minimum design supply temperature of an individual dwelling that guarantees an acceptable indoor temperature during design weather conditions.

Suggested Citation

  • Pothof, I. & Vreeken, D. & Meerkerk, M. van, 2023. "Data-driven method for optimized supply temperatures in residential buildings," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422302577x
    DOI: 10.1016/j.energy.2023.129183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302577X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    2. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Hansen, Kasper Klan & Svendsen, Svend, 2022. "Implementation of a strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 251(C).
    3. Antoine Reguis & Behrang Vand & John Currie, 2021. "Challenges for the Transition to Low-Temperature Heat in the UK: A Review," Energies, MDPI, vol. 14(21), pages 1-26, November.
    4. Jangsten, M. & Kensby, J. & Dalenbäck, J.-O. & Trüschel, A., 2017. "Survey of radiator temperatures in buildings supplied by district heating," Energy, Elsevier, vol. 137(C), pages 292-301.
    5. Øystein Rønneseth & Nina Holck Sandberg & Igor Sartori, 2019. "Is It Possible to Supply Norwegian Apartment Blocks with 4th Generation District Heating?," Energies, MDPI, vol. 12(5), pages 1-19, March.
    6. Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.
    7. Benakopoulos, Theofanis & Vergo, William & Tunzi, Michele & Salenbien, Robbe & Kolarik, Jakub & Svendsen, Svend, 2022. "Energy and cost savings with continuous low temperature heating versus intermittent heating of an office building with district heating," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    2. Tunzi, Michele & Benakopoulos, Theofanis & Yang, Qinjiang & Svendsen, Svend, 2023. "Demand side digitalisation: A methodology using heat cost allocators and energy meters to secure low-temperature operations in existing buildings connected to district heating networks," Energy, Elsevier, vol. 264(C).
    3. Stock, Jan & Xhonneux, André & Müller, Dirk, 2024. "Optimisation of district heating network separation for the utilisation of heat source potentials," Energy, Elsevier, vol. 303(C).
    4. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Hansen, Kasper Klan & Svendsen, Svend, 2022. "Implementation of a strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 251(C).
    5. Antoine Reguis & Behrang Vand & John Currie, 2021. "Challenges for the Transition to Low-Temperature Heat in the UK: A Review," Energies, MDPI, vol. 14(21), pages 1-26, November.
    6. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    7. Østergaard, Dorte Skaarup & Tunzi, Michele & Svendsen, Svend, 2021. "What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently," Energy, Elsevier, vol. 227(C).
    8. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Svendsen, Svend, 2021. "Strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 231(C).
    9. Thorsen, Jan Eric & Gudmundsson, Oddgeir & Tunzi, Michele & Esbensen, Torben, 2024. "Aftercooling concept: An innovative substation ready for 4th generation district heating networks," Energy, Elsevier, vol. 293(C).
    10. Østergaard, Dorte Skaarup & Svendsen, Svend, 2019. "Costs and benefits of preparing existing Danish buildings for low-temperature district heating," Energy, Elsevier, vol. 176(C), pages 718-727.
    11. Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.
    12. Jing, Mengke & Zhang, Shujie & Fu, Lisong & Cao, Guoquan & Wang, Rui, 2023. "Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners," Energy, Elsevier, vol. 273(C).
    13. Francesco Neirotti & Michel Noussan & Stefano Riverso & Giorgio Manganini, 2019. "Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks," Energies, MDPI, vol. 12(2), pages 1-17, January.
    14. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    15. Shao, Suola & Zhang, Huan & You, Shijun & Zheng, Wandong & Jiang, Lingfei, 2019. "Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system," Applied Energy, Elsevier, vol. 247(C), pages 78-88.
    16. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    17. Ioan Sarbu & Matei Mirza & Daniel Muntean, 2022. "Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-28, September.
    18. Tomasz Cholewa & Alicja Siuta-Olcha & Anna Życzyńska & Aleksandra Specjał & Paweł Michnikowski, 2023. "On the Minimum and Maximum Variable Cost of Heating of the Flat in Multifamily Building," Energies, MDPI, vol. 16(2), pages 1-18, January.
    19. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Theofanis Benakopoulos & Robbe Salenbien & Dirk Vanhoudt & Svend Svendsen, 2019. "Improved Control of Radiator Heating Systems with Thermostatic Radiator Valves without Pre-Setting Function," Energies, MDPI, vol. 12(17), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422302577x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.