IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920311314.html
   My bibliography  Save this article

Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle

Author

Listed:
  • Liese, Eric
  • Albright, Jacob
  • Zitney, Stephen A.

Abstract

This work describes improvements to dynamic process and control models developed previously for a 10 MWe supercritical CO2 recompression closed Brayton cycle pilot plant and highlights their use in the analysis of fast ramped-setpoint load-following operation and a warm shutdown and subsequent startup operation. One enhancement includes cooler and recuperators modeled as one-dimensional, compact, zig-zag type printed circuit heat exchangers optimized by minimizing metal mass and validated using dynamic data from a small-scale supercritical CO2 test loop. For the load-following ramps between 10 MWe and 4 MWe, an aggressive ramp rate of approximately 7.5%/min of full load is simulated using inventory management control and sliding-pressure operation, with the resulting net-load closely tracking the demand. The supercritical CO2 temperature at the inlet of the main compressor is controlled at 4 °C above the critical temperature using a water-cooled printed circuit heat exchanger. A high level of interaction between the cooler and inventory control is observed to intensify oscillatory behavior in the cycle load and compressor inlet temperature as control gains and/or ramp rates become more aggressive. Transient simulation procedures and results are also presented for a shutdown from 4 MWe to a warm condition. The warm shutdown is achieved in 30 min while satisfying the operating constraint limiting the rate of change in temperature at the primary heat exchanger inlet to less than 2 °C/min. The subsequent startup from warm conditions to positive load is reached in 45 min and minimum load of 4 MWe is achieved in 90 min.

Suggested Citation

  • Liese, Eric & Albright, Jacob & Zitney, Stephen A., 2020. "Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311314
    DOI: 10.1016/j.apenergy.2020.115628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    2. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle," Applied Energy, Elsevier, vol. 199(C), pages 247-263.
    3. Jiang, Yuan & Liese, Eric & Zitney, Stephen E. & Bhattacharyya, Debangsu, 2018. "Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles," Applied Energy, Elsevier, vol. 231(C), pages 1019-1032.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Li, Xinyu & Qin, Zheng & Dong, Keyong & Wang, Lintao & Lin, Zhimin, 2023. "Experimental study of the startup of a supercritical CO2 recompression power system," Energy, Elsevier, vol. 284(C).
    3. Cao, Yue & Zhan, Jun & Jia, Boqing & Chen, Ranjing & Si, Fengqi, 2023. "Optimum design of bivariate operation strategy for a supercritical/ transcritical CO2 hybrid waste heat recovery system driven by gas turbine exhaust," Energy, Elsevier, vol. 284(C).
    4. Du, Yadong & Yang, Ce & Zhao, Ben & Gao, Jianbing & Hu, Chenxing & Zhang, Hanzhi & Zhao, Wei, 2022. "Dynamic characteristics of a recompression supercritical CO2 cycle against variable operating conditions and temperature fluctuations of reactor outlet coolant," Energy, Elsevier, vol. 258(C).
    5. Zhang, Lianjie & Deng, Tianrui & Klemeš, Jiří Jaromír & Zeng, Min & Ma, Ting & Wang, Qiuwang, 2021. "Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions," Energy, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
    2. Xiao, Tingyu & Liu, Chao & Wang, Xurong & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin & Li, Xiaoxiao, 2022. "Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle," Renewable Energy, Elsevier, vol. 182(C), pages 119-133.
    3. Wang, Xurong & Li, Xiaoxiao & Li, Qibin & Liu, Lang & Liu, Chao, 2020. "Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions," Applied Energy, Elsevier, vol. 261(C).
    4. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    5. Battisti, F.G. & de Araujo Passos, L.A. & da Silva, A.K., 2022. "Economic and environmental assessment of a CO2 solar-powered plant with packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 314(C).
    6. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Li, Xinyu & Qin, Zheng & Dong, Keyong & Wang, Lintao & Lin, Zhimin, 2023. "Experimental study of the startup of a supercritical CO2 recompression power system," Energy, Elsevier, vol. 284(C).
    8. du Sart, Colin Francois & Rousseau, Pieter & Laubscher, Ryno, 2024. "Comparing the partial cooling and recompression cycles for a 50 MWe sCO2 CSP plant using detailed recuperator models," Renewable Energy, Elsevier, vol. 222(C).
    9. Fang, Wenchao & Chen, Sheng & Shi, Shuo, 2022. "Dynamic characteristics and real-time control of a particle-to-sCO2 moving bed heat exchanger assisted by BP neural network," Energy, Elsevier, vol. 256(C).
    10. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    11. Du, Yadong & Yang, Ce & Zhao, Ben & Hu, Chenxing & Zhang, Hanzhi & Yu, Zhiyi & Gao, Jianbing & Zhao, Wei & Wang, Haimei, 2023. "Optimal design of a supercritical carbon dioxide recompression cycle using deep neural network and data mining techniques," Energy, Elsevier, vol. 271(C).
    12. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Wang, Xuan & Cai, Jinwen & Lin, Zhimin & Tian, Hua & Shu, Gequn & Wang, Rui & Bian, Xingyan & Shi, Lingfeng, 2022. "Dynamic simulation study of the start-up and shutdown processes for a recompression CO2 Brayton cycle," Energy, Elsevier, vol. 259(C).
    14. Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).
    15. Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
    16. Du, Yadong & Yang, Ce & Zhao, Ben & Gao, Jianbing & Hu, Chenxing & Zhang, Hanzhi & Zhao, Wei, 2022. "Dynamic characteristics of a recompression supercritical CO2 cycle against variable operating conditions and temperature fluctuations of reactor outlet coolant," Energy, Elsevier, vol. 258(C).
    17. Liu, Xiaokai & Guo, Jiangfeng & Han, Zengxiao & Cheng, Keyong & Huai, Xiulan, 2022. "Studies on thermal-hydraulic characteristics of supercritical CO2 flows with non-uniform heat flux in a tubular solar receiver," Renewable Energy, Elsevier, vol. 201(P1), pages 291-304.
    18. Xingyan, Bian & Wang, Xuan & Wang, Rui & Cai, Jinwen & Tian, Hua & Shu, Gequn, 2022. "Optimal selection of supercritical CO2 Brayton cycle layouts based on part-load performance," Energy, Elsevier, vol. 256(C).
    19. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
    20. Lou, Juwei & Wang, Jiangfeng & Chen, Liangqi & Wang, Yikai & Zhao, Pan & Wang, Shunsen, 2023. "Multi-objective optimization and off-design performance evaluation of coaxial turbomachines for a novel energy storage-based recuperated S–CO2 Brayton cycle driven by nuclear energy," Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.