IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025616.html
   My bibliography  Save this article

Lithium-ion battery state of health monitoring based on an adaptive variable fractional order multivariate grey model

Author

Listed:
  • Xu, Zhicun
  • Xie, Naiming
  • Diao, Huakang

Abstract

Accurate assessment of the state of health of lithium-ion batteries using relevant factors is crucial for the maintenance of lithium-ion batteries in electric vehicles. Firstly, data features are extracted from University of Maryland public dataset and dataset is pre-processed. Secondly, the extracted features were analysed using a grey relational analysis model to identify the most significant factors affecting the state of health. Thirdly, this paper proposed an adaptive variable fractional order multivariate grey prediction model to accurately estimate the state of health of lithium-ion batteries. The comparative results demonstrate the overall superiority of the proposed model.

Suggested Citation

  • Xu, Zhicun & Xie, Naiming & Diao, Huakang, 2023. "Lithium-ion battery state of health monitoring based on an adaptive variable fractional order multivariate grey model," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025616
    DOI: 10.1016/j.energy.2023.129167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "Parallel State Fusion LSTM-based Early-cycle Stage Lithium-ion Battery RUL Prediction Under Lebesgue Sampling Framework," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Chen, Dan & Meng, Jinhao & Huang, Huanyang & Wu, Ji & Liu, Ping & Lu, Jiwu & Liu, Tianqi, 2022. "An Empirical-Data Hybrid Driven Approach for Remaining Useful Life prediction of lithium-ion batteries considering capacity diving," Energy, Elsevier, vol. 245(C).
    3. Li, Yihuan & Li, Kang & Liu, Xuan & Li, Xiang & Zhang, Li & Rente, Bruno & Sun, Tong & Grattan, Kenneth T.V., 2022. "A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements," Applied Energy, Elsevier, vol. 325(C).
    4. Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Xin & Wang, Yujie & Jiang, Cong & Zhang, Xingchen & Xiang, Haoxiang & Chen, Zonghai, 2024. "End-to-end deep learning powered battery state of health estimation considering multi-neighboring incomplete charging data," Energy, Elsevier, vol. 292(C).
    2. Fahmy, Hend M. & Alqahtani, Ayedh H. & Hasanien, Hany M., 2024. "Precise modeling of lithium-ion battery in industrial applications using Walrus optimization algorithm," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    2. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    3. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    4. Zhou, Chenyu & Shen, Yun & Wu, Haixin & Wang, Jianhong, 2022. "Using fractional discrete Verhulst model to forecast Fujian's electricity consumption in China," Energy, Elsevier, vol. 255(C).
    5. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    6. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    7. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
    8. Yousaf Raza, Muhammad & Lin, Boqiang, 2023. "Development trend of Pakistan's natural gas consumption: A sectorial decomposition analysis," Energy, Elsevier, vol. 278(PA).
    9. Matheus Belucio & Renato Santiago & José Alberto Fuinhas & Luiz Braun & José Antunes, 2022. "The Impact of Natural Gas, Oil, and Renewables Consumption on Carbon Dioxide Emissions: European Evidence," Energies, MDPI, vol. 15(14), pages 1-16, July.
    10. Guangheng Qi & Ning Ma & Kai Wang, 2024. "Predicting the Remaining Useful Life of Supercapacitors under Different Operating Conditions," Energies, MDPI, vol. 17(11), pages 1-18, May.
    11. Lin, Mingqiang & Yan, Chenhao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2022. "Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression," Energy, Elsevier, vol. 250(C).
    12. Song, Dengwei & Cheng, Yujie & Zhou, An & Lu, Chen & Chong, Jin & Ma, Jian, 2024. "Remaining useful life prediction and cycle life test optimization for multiple-formula battery: A method based on multi-source transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    13. Lv, Haichao & Kang, Lixia & Liu, Yongzhong, 2023. "Analysis of strategies to maximize the cycle life of lithium-ion batteries based on aging trajectory prediction," Energy, Elsevier, vol. 275(C).
    14. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
    15. Yang, Yongsong & Xu, Yuchen & Nie, Yuwei & Li, Jianming & Liu, Shizhuo & Zhao, Lijun & Yu, Quanqing & Zhang, Chengming, 2024. "Deep transfer learning enables battery state of charge and state of health estimation," Energy, Elsevier, vol. 294(C).
    16. Wu, Ji & Fang, Leichao & Dong, Guangzhong & Lin, Mingqiang, 2023. "State of health estimation of lithium-ion battery with improved radial basis function neural network," Energy, Elsevier, vol. 262(PB).
    17. Sun-Feel Yang & So-Won Choi & Eul-Bum Lee, 2023. "A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices," Energies, MDPI, vol. 16(11), pages 1-39, May.
    18. Duan, Linchao & Zhang, Xugang & Jiang, Zhigang & Gong, Qingshan & Wang, Yan & Ao, Xiuyi, 2023. "State of charge estimation of lithium-ion batteries based on second-order adaptive extended Kalman filter with correspondence analysis," Energy, Elsevier, vol. 280(C).
    19. Chunling Wu & Juncheng Fu & Xinrong Huang & Xianfeng Xu & Jinhao Meng, 2023. "Lithium-Ion Battery Health State Prediction Based on VMD and DBO-SVR," Energies, MDPI, vol. 16(10), pages 1-16, May.
    20. Huang, Haichi & Bian, Chong & Wu, Mengdan & An, Dong & Yang, Shunkun, 2024. "A novel integrated SOC–SOH estimation framework for whole-life-cycle lithium-ion batteries," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.