IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223012665.html
   My bibliography  Save this article

Development trend of Pakistan's natural gas consumption: A sectorial decomposition analysis

Author

Listed:
  • Yousaf Raza, Muhammad
  • Lin, Boqiang

Abstract

Natural gas is a crucial transitional energy for Pakistan to attain the emission reduction goal for sustainable economic growth. To imply environmentally-friendly fuel and save foreign exchange, huge indigenous resources can be used. Under sustainable policies, Pakistan's natural gas is predicted to adequately rise, which will significantly impact energy security, economy and environment. The objective of the study is to analyze NGC factors' decomposition in Pakistan from 1996 to 2020, applying the logarithmic mean Divisia index method to provide evidence of the effect of key factors, including NGC intensity, income and population effects. The results show that: (a) during 1996–2020, natural gas is raised maximally due to the rise in income and population levels. (b) Population effect was the second key driver of gas rising, while the intensity effect was added to slow down during the maximum intervals. With the rising trend of a population between 0.12 and 0.22 billion, it is the only leading factor that is increasing the NGC to maximum level. (c) The sectorial outcomes influenced population growth with positive income, evidenced by the per capita. Looking forward to the energy targets, prediction highlights that sustainability and energy security could be guaranteed by modifying technological progress and environmental policies.

Suggested Citation

  • Yousaf Raza, Muhammad & Lin, Boqiang, 2023. "Development trend of Pakistan's natural gas consumption: A sectorial decomposition analysis," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012665
    DOI: 10.1016/j.energy.2023.127872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Ki-Hong & Oh, Wankeun, 2014. "Extended Divisia index decomposition of changes in energy intensity: A case of Korean manufacturing industry," Energy Policy, Elsevier, vol. 65(C), pages 275-283.
    2. Karmellos, M. & Kopidou, D. & Diakoulaki, D., 2016. "A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries," Energy, Elsevier, vol. 94(C), pages 680-692.
    3. Pao, Hsiao-Tien & Yu, Hsiao-Cheng & Yang, Yeou-Herng, 2011. "Modeling the CO2 emissions, energy use, and economic growth in Russia," Energy, Elsevier, vol. 36(8), pages 5094-5100.
    4. Hooi Hooi Lean & Vinod Mishra & Russell Smyth, 2016. "Conditional convergence in US disaggregated petroleum consumption at the sector level," Applied Economics, Taylor & Francis Journals, vol. 48(32), pages 3049-3061, July.
    5. Khan, Muhammad Arshad, 2015. "Modelling and forecasting the demand for natural gas in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1145-1159.
    6. Wang, Ting & Lin, Boqiang, 2014. "China's natural gas consumption and subsidies—From a sector perspective," Energy Policy, Elsevier, vol. 65(C), pages 541-551.
    7. Liao, Hua & Fan, Ying & Wei, Yi-Ming, 2007. "What induced China's energy intensity to fluctuate: 1997-2006?," Energy Policy, Elsevier, vol. 35(9), pages 4640-4649, September.
    8. Shrestha, Ram M. & Anandarajah, Gabrial & Liyanage, Migara H., 2009. "Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific," Energy Policy, Elsevier, vol. 37(6), pages 2375-2384, June.
    9. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    10. Lin, Boqiang & Xie, Chunping, 2014. "Energy substitution effect on transport industry of China-based on trans-log production function," Energy, Elsevier, vol. 67(C), pages 213-222.
    11. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    12. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    13. Chai, Jian & Liang, Ting & Lai, Kin Keung & Zhang, Zhe George & Wang, Shouyang, 2018. "The future natural gas consumption in China: Based on the LMDI-STIRPAT-PLSR framework and scenario analysis," Energy Policy, Elsevier, vol. 119(C), pages 215-225.
    14. Wachsmann, Ulrike & Wood, Richard & Lenzen, Manfred & Schaeffer, Roberto, 2009. "Structural decomposition of energy use in Brazil from 1970 to 1996," Applied Energy, Elsevier, vol. 86(4), pages 578-587, April.
    15. repec:ipg:wpaper:2014-289 is not listed on IDEAS
    16. Apergis, Nicholas & Payne, James E., 2010. "Natural gas consumption and economic growth: A panel investigation of 67 countries," Applied Energy, Elsevier, vol. 87(8), pages 2759-2763, August.
    17. Wang, Yangjie & Chen, Xiaohong & Ren, Shenggang, 2019. "Clean energy adoption and maternal health: Evidence from China," Energy Economics, Elsevier, vol. 84(C).
    18. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    19. Li, Lanlan & Ming, Huayang & Fu, Weizhong & Shi, Quan & Yu, Shiwei, 2021. "Exploring household natural gas consumption patterns and their influencing factors: An integrated clustering and econometric method," Energy, Elsevier, vol. 224(C).
    20. Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
    21. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    22. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    23. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    24. Isik, Mine & Sarica, Kemal & Ari, Izzet, 2020. "Driving forces of Turkey's transportation sector CO2 emissions: An LMDI approach," Transport Policy, Elsevier, vol. 97(C), pages 210-219.
    25. Shahbaz, Muhammad & Arouri, Mohamed & Teulon, Frédéric, 2014. "Short- and long-run relationships between natural gas consumption and economic growth: Evidence from Pakistan," Economic Modelling, Elsevier, vol. 41(C), pages 219-226.
    26. Raza, Muhammad Yousaf & Wu, Rongxin & Lin, Boqiang, 2023. "A decoupling process of Pakistan's agriculture sector: Insights from energy and economic perspectives," Energy, Elsevier, vol. 263(PC).
    27. Korkmaz, Özge, 2022. "What is the role of the rents in energy connection with economic growth for China and the United States?," Resources Policy, Elsevier, vol. 75(C).
    28. Raza, Muhammad Yousaf & Lin, Boqiang, 2022. "Energy efficiency and factor productivity in Pakistan: Policy perspectives," Energy, Elsevier, vol. 247(C).
    29. Yousaf Raza, Muhammad & Lin, Boqiang, 2022. "Natural gas consumption, energy efficiency and low carbon transition in Pakistan," Energy, Elsevier, vol. 240(C).
    30. Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Analysis of energy security indicators and CO2 emissions. A case from a developing economy," Energy, Elsevier, vol. 200(C).
    31. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(1), pages 656-660, January.
    32. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    33. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    34. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    35. Lin, Boqiang & Zhu, Runqing & Raza, Muhammad Yousaf, 2022. "Fuel substitution and environmental sustainability in India: Perspectives of technical progress," Energy, Elsevier, vol. 261(PB).
    36. Singh, Sanjeet & Bansal, Pooja & Hosen, Mosharrof & Bansal, Sanjeev K., 2023. "Forecasting annual natural gas consumption in USA: Application of machine learning techniques- ANN and SVM," Resources Policy, Elsevier, vol. 80(C).
    37. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    38. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    39. Korkmaz, Özge, 2022. "Do oil, coal, and natural gas consumption and rents impact economic growth? An empirical analysis of the Russian Federation," Resources Policy, Elsevier, vol. 77(C).
    40. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Regional heterogeneity of China's energy efficiency in “new normal”: A meta-frontier Super-SBM analysis," Energy Policy, Elsevier, vol. 134(C).
    41. Andreoni, Valeria, 2022. "Drivers of coal consumption changes: A decomposition analysis for Chinese regions," Energy, Elsevier, vol. 242(C).
    42. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    43. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    44. Jones, Clifton T., 2014. "The role of biomass in US industrial interfuel substitution," Energy Policy, Elsevier, vol. 69(C), pages 122-126.
    45. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    46. Javid, Muhammad & Khan, Farzana Naheed & Arif, Umaima, 2022. "Income and price elasticities of natural gas demand in Pakistan: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    47. Sharma, Gagan Deep & Tiwari, Aviral Kumar & Erkut, Burak & Mundi, Hardeep Singh, 2021. "Exploring the nexus between non-renewable and renewable energy consumptions and economic development: Evidence from panel estimations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    48. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    49. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    50. Favero, Filippo & Grossi, Luigi, 2023. "Analysis of individual natural gas consumption and price elasticity: Evidence from billing data in Italy," Energy Economics, Elsevier, vol. 118(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Songlin & Raza, Muhammad Yousaf & Lin, Boqiang, 2024. "Analysis of coal-related energy consumption, economic growth and intensity effects in Pakistan," Energy, Elsevier, vol. 292(C).
    2. Li, Junjie & Yan, Yulong & Peng, Lin & Zhou, Dongpeng & Wang, Yirong & Zhang, Jie & Cao, Ying & Liu, Lin & Lin, Kun & Li, Menggang & Xie, Kechang, 2024. "Footprint family of China's coal-based synthetic natural gas industry," Energy, Elsevier, vol. 312(C).
    3. Raza, Muhammad Yousaf & Lin, Boqiang, 2024. "Energy transition, carbon trade and sustainable electricity generation in Pakistan," Applied Energy, Elsevier, vol. 372(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousaf Raza, Muhammad & Lin, Boqiang, 2022. "Natural gas consumption, energy efficiency and low carbon transition in Pakistan," Energy, Elsevier, vol. 240(C).
    2. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    3. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    4. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    5. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    6. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    7. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    8. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    9. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    10. Tang, Songlin & Raza, Muhammad Yousaf & Lin, Boqiang, 2024. "Analysis of coal-related energy consumption, economic growth and intensity effects in Pakistan," Energy, Elsevier, vol. 292(C).
    11. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2010. "Monitoring energy efficiency trends in European industry: Which top-down method should be used?," Energy Policy, Elsevier, vol. 38(11), pages 6910-6918, November.
    12. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    13. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    14. Inglesi-Lotz, Roula & Blignaut, James N., 2011. "South Africa’s electricity consumption: A sectoral decomposition analysis," Applied Energy, Elsevier, vol. 88(12), pages 4779-4784.
    15. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    16. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    17. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    18. Lin, Boqiang & Long, Houyin, 2016. "Emissions reduction in China׳s chemical industry – Based on LMDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1348-1355.
    19. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    20. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.