IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223024222.html
   My bibliography  Save this article

Characterizing sector-wide thermal energy profiles for industrial sectors

Author

Listed:
  • Ong, Benjamin H.Y.
  • Bhadbhade, Navdeep
  • Olsen, Donald G.
  • Wellig, Beat

Abstract

Process heat electrification, energy efficiency improvement, and renewable technology integration are the most effective ways of achieving industrial decarbonization. However, precise knowledge of thermal energy demands and excess heat sources along with the corresponding temperature levels is imperative for the most optimum integration of aforementioned process. The current study presents a novel methodology for constructing sector-wide composite curves to accurately characterize the thermal energy demands and the available excess heat sources for the Swiss industry subsectors. The sector-wide energy demand profiles derived from this methodology offer valuable insights into the quantity of heat demand and the quality of the available excess heat. Thus, enabling the implementation of energy efficiency and decarbonization technologies such as heat pumps, and renewable heating and cooling technologies. The sector-wide energy demand profiles are built using Pinch Analyses and top-down statistical approach, thus ensuring complete sectoral coverage. The application of this novel approach is demonstrated using Swiss meat and chocolate industry subsectors as case studies. Based on the sector-wide energy demand profiles developed for meat and chocolate production, heat pump integration and solar thermal integration can potentially reduce about 80% of process heat demand, for both sectors.

Suggested Citation

  • Ong, Benjamin H.Y. & Bhadbhade, Navdeep & Olsen, Donald G. & Wellig, Beat, 2023. "Characterizing sector-wide thermal energy profiles for industrial sectors," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223024222
    DOI: 10.1016/j.energy.2023.129028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hammond, G.P. & Norman, J.B., 2014. "Heat recovery opportunities in UK industry," Applied Energy, Elsevier, vol. 116(C), pages 387-397.
    2. Ramírez, C.A. & Patel, M. & Blok, K., 2006. "How much energy to process one pound of meat? A comparison of energy use and specific energy consumption in the meat industry of four European countries," Energy, Elsevier, vol. 31(12), pages 2047-2063.
    3. McKenna, R.C. & Norman, J.B., 2010. "Spatial modelling of industrial heat loads and recovery potentials in the UK," Energy Policy, Elsevier, vol. 38(10), pages 5878-5891, October.
    4. Brueckner, Sarah & Miró, Laia & Cabeza, Luisa F. & Pehnt, Martin & Laevemann, Eberhard, 2014. "Methods to estimate the industrial waste heat potential of regions – A categorization and literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 164-171.
    5. Bhadbhade, Navdeep & Zuberi, M. Jibran S. & Patel, Martin K., 2019. "A bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials for the swiss metals sector," Energy, Elsevier, vol. 181(C), pages 173-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Gambini & Michele Manno & Michela Vellini, 2024. "Energy and Exergy Analysis of Transcritical CO 2 Cycles for Heat Pump Applications," Sustainability, MDPI, vol. 16(17), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pia Manz & Katerina Kermeli & Urban Persson & Marius Neuwirth & Tobias Fleiter & Wina Crijns-Graus, 2021. "Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites?," Sustainability, MDPI, vol. 13(3), pages 1-34, January.
    2. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.
    3. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    4. Fabian Bühler & Stefan Petrović & Torben Ommen & Fridolin Müller Holm & Henrik Pieper & Brian Elmegaard, 2018. "Identification and Evaluation of Cases for Excess Heat Utilisation Using GIS," Energies, MDPI, vol. 11(4), pages 1-24, March.
    5. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    6. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    7. Vanessa Burg & Florent Richardet & Severin Wälty & Ramin Roshandel & Stefanie Hellweg, 2023. "Mapping Local Synergies: Spatio-Temporal Analysis of Switzerland’s Waste Heat Potentials vs. Heat Demand," Energies, MDPI, vol. 17(1), pages 1-21, December.
    8. Kavvadias, Konstantinos C. & Quoilin, Sylvain, 2018. "Exploiting waste heat potential by long distance heat transmission: Design considerations and techno-economic assessment," Applied Energy, Elsevier, vol. 216(C), pages 452-465.
    9. Paul Christodoulides & Lazaros Aresti & Gregoris P. Panayiotou & Savvas Tassou & Georgios A. Florides, 2022. "Adoption of Waste Heat Recovery Technologies: Reviewing the Relevant Barriers and Recommendations on How to Overcome Them," SN Operations Research Forum, Springer, vol. 3(1), pages 1-21, March.
    10. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    11. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    12. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.
    14. Luberti, Mauro & Gowans, Robert & Finn, Patrick & Santori, Giulio, 2022. "An estimate of the ultralow waste heat available in the European Union," Energy, Elsevier, vol. 238(PC).
    15. Albert, Max D.A. & Bennett, Katherine O. & Adams, Charlotte A. & Gluyas, Jon G., 2022. "Waste heat mapping: A UK study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    17. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
    18. Dénarié, A. & Muscherà, M. & Calderoni, M. & Motta, M., 2019. "Industrial excess heat recovery in district heating: Data assessment methodology and application to a real case study in Milano, Italy," Energy, Elsevier, vol. 166(C), pages 170-182.
    19. Nikunj Gangar & Sandro Macchietto & Christos N. Markides, 2020. "Recovery and Utilization of Low-Grade Waste Heat in the Oil-Refining Industry Using Heat Engines and Heat Pumps: An International Technoeconomic Comparison," Energies, MDPI, vol. 13(10), pages 1-29, May.
    20. Chen, Q. & Hammond, G.P. & Norman, J.B., 2016. "Energy efficiency potentials: Contrasting thermodynamic, technical and economic limits for organic Rankine cycles within UK industry," Applied Energy, Elsevier, vol. 164(C), pages 984-990.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223024222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.