IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022739.html
   My bibliography  Save this article

Methods for enhancing the properties of products from food waste via hydrothermal carbonation (HTC): Gradient-enzymatic-pretreatment-nitrogen-migration-strategy

Author

Listed:
  • Ran, Shuai
  • Zhang, Xin
  • Jiang, Yue
  • Gao, Ying
  • Xu, Hui
  • Yang, Hui Ying
  • Xu, Jiayu
  • Wang, Yuang
  • Guo, Yuan
  • Zhang, Hong
  • Lyu, Yinong

Abstract

Gradient enzymatic pretreatment is an effective method for improving the quality of hydrothermal carbonation products from food waste. Food waste mainly contains polysaccharides, proteins, fats, and indigestible fibers. In this study, food waste model compounds formulated according to the survey were subjected to enzyme-assisted hydrothermal carbonation. Results showed that the high heating value of the hydrochar reached 31.62 MJ/kg at 240 °C for 25 min when the meat content of the raw material was high. Increases in reaction temperature and residence time remarkably changed the species of compounds in the aqueous phase. The increase in the amount of the key nitrogen-containing components doping in the aqueous phase after enzyme-assisted hydrothermal carbonation was the major factor that enhanced its luminescence intensity. The concentration of total nitrogen in the aqueous phase reached 1403.31 mg/L at 220 °C for 25 min. The gradient enzymatic pretreatment method combined with hydrothermal carbonation process facilitates the nitrogen migration of food waste in the aqueous phase, thus ensuring sustainable production and enhancing the product properties of food waste for high-valued applications.

Suggested Citation

  • Ran, Shuai & Zhang, Xin & Jiang, Yue & Gao, Ying & Xu, Hui & Yang, Hui Ying & Xu, Jiayu & Wang, Yuang & Guo, Yuan & Zhang, Hong & Lyu, Yinong, 2023. "Methods for enhancing the properties of products from food waste via hydrothermal carbonation (HTC): Gradient-enzymatic-pretreatment-nitrogen-migration-strategy," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022739
    DOI: 10.1016/j.energy.2023.128879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Bin & Song, Mengge & Xie, Xing & Wei, Juntao & Xu, Deliang & Ding, Kuan & Huang, Yong & Zhang, Shu & Hu, Xun & Zhang, Shihong & Liu, Dongjing, 2023. "Oxidative fast pyrolysis of biomass in a quartz tube fluidized bed reactor: Effect of oxygen equivalence ratio," Energy, Elsevier, vol. 270(C).
    2. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Mingxun & Ge, Zefeng & Wu, Yuqing & Ma, Yuna & Zha, Zhenting & Hou, Zenghui & Zhang, Huiyan, 2024. "Energy utilization of takeaway waste: Components separation and fuel preparation employing hydrothermal carbonization and gasification," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulina-Soledad Vidal-Espinosa & Manuel Alvarez-Vera & Andrés Cárdenas & Juan-Carlos Cobos-Torres, 2023. "Beneficial Microorganisms in the Anaerobic Digestion of Cattle and Swine Excreta," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    2. Muhammad Usman & Shuo Cheng & Sasipa Boonyubol & Jeffrey S. Cross, 2023. "Evaluating Green Solvents for Bio-Oil Extraction: Advancements, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(15), pages 1-45, August.
    3. Wojciech Jerzak & Esther Acha & Bin Li, 2024. "Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis," Energies, MDPI, vol. 17(20), pages 1-31, October.
    4. Kim, D. & Hadigheh, S.A., 2024. "Oxidative pyrolysis of biosolid: Air concentration effects on biochar formation and kinetics," Renewable Energy, Elsevier, vol. 224(C).
    5. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Yaser Sobhanifard & Seyed Mohammad Saleh Hashemi Apourvari, 2022. "Environmental sustainable development through modeling and ranking of influential factors of reference groups on consumer behavior of green products: The case of Iran," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1294-1312, October.
    7. Muniyappan, Dineshkumar & Pereira Junior, Amaro Olimpio & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2023. "Synergistic recovery of renewable hydrocarbon resources via microwave co-pyrolysis of biomass residue and plastic waste over spent toner catalyst towards sustainable solid waste management," Energy, Elsevier, vol. 278(C).
    8. Li, Bin & Huang, Huimin & Xie, Xing & Wei, Juntao & Zhang, Shu & Hu, Xun & Zhang, Shihong & Liu, Dongjing, 2023. "Volatile-char interactions during biomass pyrolysis: Effects of AAEMs removal and KOH addition in char," Renewable Energy, Elsevier, vol. 219(P1).
    9. Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
    10. Penny Atkins & Gareth Milton & Andrew Atkins & Robert Morgan, 2021. "A Local Ecosystem Assessment of the Potential for Net Negative Heavy-Duty Truck Greenhouse Gas Emissions through Biomethane Upcycling," Energies, MDPI, vol. 14(4), pages 1-22, February.
    11. Safarzadeh, Soroush & Hafezalkotob, Ashkan & Jafari, Hamed, 2022. "Energy supply chain empowerment through tradable green and white certificates: A pathway to sustainable energy generation," Applied Energy, Elsevier, vol. 323(C).
    12. Ziqi Yin & Jianzhai Wu, 2021. "Spatial Dependence Evaluation of Agricultural Technical Efficiency—Based on the Stochastic Frontier and Spatial Econometric Model," Sustainability, MDPI, vol. 13(5), pages 1-12, March.
    13. Xu, Tong & Wang, Chunbo & Hong, Dikun, 2023. "Programmable heating and quenching for enhancing coal pyrolysis tar yield: A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 285(C).
    14. Sheng, Yingying & Tian, Fuping & Wang, Xiang & Jiang, Ningyuan & Zhang, Xinchi & Chen, Xiao & Liang, Changhai & Wang, Anjie, 2024. "Carbon-encapsulated Ni catalysts derived from citrate complexes for highly efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol," Energy, Elsevier, vol. 292(C).
    15. Nazari, Ali & Soltani, M. & Hosseinpour, Morteza & Alharbi, Walied & Raahemifar, Kaamran, 2021. "Integrated anaerobic co-digestion of municipal organic waste to biogas using geothermal and CHP plants: A comprehensive analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.