IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics036054422301575x.html
   My bibliography  Save this article

Effect of horizontal stress on fractal characteristics of rockburst fragments in coal mining

Author

Listed:
  • Yang, Beibei
  • He, Mingming
  • Xiao, Zhanshan
  • Zhao, Jianbin
  • Zhang, Yonghao

Abstract

With the continuous increase in underground engineering depth, the risk of coal–rock dynamic disasters, such as rockburst, is becoming increasingly serious and complex threatening the safety of coal resources. To study the effect of horizontal stress on fractal characteristics of rockburst fragments in coal mining, this paper uses a digital drilling instrument to perform rockburst proneness tests on andesite and granite specimens with different horizontal stresses. Fractal theory is used to calculate the fractal dimension of the rockburst fragments for several combinations of parameters. The residual elastic energy index is combined with the fractal dimension of rockburst fragments to assess the propensity of rockbursts from macroscopic and microscopic perspectives. The experimental results show that the positive correlation between the fractal dimension and the AEF obtained under the two methods. The fractal dimensions of andesite and granite are 1.507–1.80 and 1.734–1.979, respectively. According to the rockburst proneness criterion, it is predicted that andesite and granite are all strong rockbursts under confining pressures of 20 MPa, 30 MPa and 50 MPa. Therefore, it is of some theoretical relevance to investigate the rockburst mechanism in terms of both the AEFand fractal dimensions of fragments under different unloading conditions.

Suggested Citation

  • Yang, Beibei & He, Mingming & Xiao, Zhanshan & Zhao, Jianbin & Zhang, Yonghao, 2023. "Effect of horizontal stress on fractal characteristics of rockburst fragments in coal mining," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s036054422301575x
    DOI: 10.1016/j.energy.2023.128181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301575X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    2. Xu, Jiuping & Gao, Wen & Xie, Heping & Dai, Jingqi & Lv, Chengwei & Li, Meihui, 2018. "Integrated tech-paradigm based innovative approach towards ecological coal mining," Energy, Elsevier, vol. 151(C), pages 297-308.
    3. Zhou, Yinbo & Zhang, Ruilin & Huang, Jilei & Li, Zenghua & Chen, Zhao & Zhao, Zhou & Hong, Yidu, 2020. "Influence of alkaline solution injection for wettability and permeability of coal with CO2 injection," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wei & Chu, Xiangyu & Xu, Hao & Chen, Wei & Ma, Liwei & Qin, Yueping & Wei, Jun, 2022. "Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation," Energy, Elsevier, vol. 247(C).
    2. Shi, Quanlin & Jiang, Wenjie & Qin, Botao & Hao, Mingyue & He, Zhenyu, 2023. "Effects of oxidation temperature on microstructure and spontaneous combustion characteristics of coal: A case study of Shendong long-flame coal," Energy, Elsevier, vol. 284(C).
    3. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    4. Pan, Rongkun & Hu, Daimin & Han, Xuefeng & Chao, Jiangkun & Jia, Hailin, 2023. "Analysis of the wetting and exothermic properties of preoxidized coal and the microscopic mechanism," Energy, Elsevier, vol. 271(C).
    5. Zhang, Xun & Zou, Jiahui & Lu, Bing & Huang, Ge & Yu, Chen & Liang, Huimin, 2023. "Experimental study on effect of mudstone on spontaneous combustion of coal," Energy, Elsevier, vol. 285(C).
    6. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    7. Peizhong Lu & Yuxuan Huang & Peng Jin & Shouguo Yang & Man Wang & Xiaochuan Wang, 2023. "Optimization of a Marker Gas for Analyzing and Predicting the Spontaneous Combustion Period of Coking Coal," Energies, MDPI, vol. 16(23), pages 1-19, November.
    8. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    9. Deng, Jun & Yang, Nannan & Wang, Caiping & Yin, Deng & Xiaoyong, Zhao & He, Yongjun, 2023. "Study on staged heat transfer law of coal spontaneous combustion in deep mines," Energy, Elsevier, vol. 285(C).
    10. Hua Wang & Wei Zhang & Haihui Xin & Deming Wang & Cuicui Di & Lu Liu, 2021. "Characteristics of Pyrolysis and Low Oxygen Combustion of Long Flame Coal and Reburning of Residues," Energies, MDPI, vol. 14(10), pages 1-17, May.
    11. Zhang, Yanni & Shu, Pan & Deng, Jun & Duan, Zhengxiao & Li, Lele & Zhang, Lulu, 2022. "Analysis of oxidation pathways for characteristic groups in coal spontaneous combustion," Energy, Elsevier, vol. 254(PA).
    12. Zhu, Hongqing & Liao, Qi & Qu, Baolin & Hu, Lintao & Wang, Haoran & Gao, Rongxiang & Zhang, Yilong, 2023. "Relationship between the main functional groups and complex permittivity in pre-oxidised lignite at terahertz frequencies based on grey correlation analysis," Energy, Elsevier, vol. 278(C).
    13. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).
    14. Zhang, Yanni & Hou, Yunchao & Yang, Dan & Deng, Jun, 2024. "Transformation and migration of key elements during the thermal reaction of coal spontaneous combustion," Energy, Elsevier, vol. 290(C).
    15. Jonek-Kowalska, Izabela, 2019. "Consolidation as a risk management method in the lifecycle of a mining company: A novel methodological approach and evidence from the coal industry in Poland," Resources Policy, Elsevier, vol. 60(C), pages 169-177.
    16. Zhang, Wei & Wang, Deming & Xin, Haihui & Wang, Chenguang & Xu, Zuoming & Hou, Zhenhai & Qi, Zhangfan, 2024. "Reignition characteristics of lignite affected by pre-oxidation and liquid nitrogen cold soaking," Energy, Elsevier, vol. 303(C).
    17. Nie, Wen & Cha, Xingpeng & Bao, Qiu & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Zhang, Xu & Ma, Qingxin & Guo, Cheng & Yi, Shixing & Jiang, Chenwang, 2023. "Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation," Energy, Elsevier, vol. 263(PB).
    18. Guo, Shengli & Yang, Wenwang & Yuan, Shujie & Zhuo Yan, & Geng, Weile, 2022. "Experimental investigation of erosion effect on microstructure and oxidation characteristics of long-flame coal," Energy, Elsevier, vol. 259(C).
    19. Zhou, Yinbo & Li, Hansheng & Huang, Jilei & Zhang, Ruilin & Wang, Shijie & Hong, Yidu & Yang, Yongliang, 2021. "Influence of coal deformation on the Knudsen number of gas flow in coal seams," Energy, Elsevier, vol. 233(C).
    20. Gao, Fei & Bai, Qihui & Jia, Zhe & Zhang, Xun & Li, Yingdi, 2024. "Influence and inerting mechanism of inert gas atmospheres on the characteristics of oxidative spontaneous combustion in coal," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s036054422301575x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.