IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924012303.html
   My bibliography  Save this article

Robust real-time energy management for a hydrogen refueling station using generative adversarial imitation learning

Author

Listed:
  • Huy, Truong Hoang Bao
  • Duy, Nguyen Thanh Minh
  • Phu, Pham Van
  • Le, Tien-Dat
  • Park, Seongkeun
  • Kim, Daehee

Abstract

As the demand for hydrogen fuel increases with the rise of fuel-cell electric vehicles (FCEVs), the energy management of hydrogen refueling stations (HRSs) is crucial for operational efficiency and environmental sustainability. Although previous studies have applied various energy management methods to HRSs, the application of data-driven approaches for real-time optimization remains very limited. This study addresses this gap by proposing a novel energy management model for optimal real-time energy scheduling of on-grid HRSs using generative adversarial imitation learning (GAIL). The proposed algorithm aims to mimic expert demonstrations to enhance decision-making. Initially, expert trajectories are constructed by collecting state-action pairs, achieved by solving a deterministic energy scheduling model using historical data and a mixed integer linear programming (MILP) solver. These expert trajectories are then used to train the GAIL algorithm. Through adversarial training involving policy and discriminator networks, GAIL accurately simulates expert behavior, enabling strategic decisions regarding power-to‑hydrogen conversion, hydrogen-to-power conversion, and FCEV refueling to maximize system profit. The applicability and feasibility of the GAIL algorithm are evaluated across a wide range of scenarios. The results show that total profit increases by up to 29% with the application of the proposed GAIL algorithm. Compared to well-regarded deep reinforcement learning methods, GAIL demonstrates superior performance, proving its effectiveness in real-time energy scheduling of on-grid HRSs.

Suggested Citation

  • Huy, Truong Hoang Bao & Duy, Nguyen Thanh Minh & Phu, Pham Van & Le, Tien-Dat & Park, Seongkeun & Kim, Daehee, 2024. "Robust real-time energy management for a hydrogen refueling station using generative adversarial imitation learning," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012303
    DOI: 10.1016/j.apenergy.2024.123847
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924012303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Mohammad Shojaei & Reihaneh Aghamolaei & Mohammad Reza Ghaani, 2024. "Recent Advancements in Applying Machine Learning in Power-to-X Processes: A Literature Review," Sustainability, MDPI, vol. 16(21), pages 1-41, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.