IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v277y2023ics0360544223010745.html
   My bibliography  Save this article

Regional collaborative planning equipped with shared energy storage under multi-time scale rolling optimisation method

Author

Listed:
  • Du, Sipeng
  • Wu, Di
  • Dai, Zhong
  • Li, Guiqiang
  • Lahaxibai, Shala

Abstract

Integrated energy systems (IES) have become a popular direction in the field of energy research due to their economic, efficient and environmental friendly advantages. Among them, multi-region integrated energy systems (M-RIES) are more valuable than single-region integrated energy systems (S-RIES) due to their low energy loss, high economy and reliability. At present, there is a lack of an optimisation method that integrates station-network synergy, inter-station interaction, shared energy storage configuration, overall planning of equipment configuration and multi-timescale rolling for the multi-faceted performance enhancement of M-RIES. Therefore, this paper proposes an M-RIES with station-storage interaction and inter-station interaction under the consideration of station-network synergy, and conducts a study on the optimal configuration of M-RIES from the viewpoint of economy and environmental protection. The final analysis is based on a northern region. The results show that the system achieves an energy efficiency of 1.07, a 16.9% reduction in total station equipment configuration, a 3.87% reduction in cost and a 0.76% increase in new energy consumption rate compared to a stand-alone operating system. Taking one of the energy stations as an example, under the operating conditions of 10% intra-day and 5% real-time error, the multi-timescale rolling optimisation method significantly improves the energy supply rate compared to the day-ahead dispatching method, where the error rates for the three typical days of transition, winter and summer are only 0.43%, 2.56% and 0.06%, corresponding to a reduction of 5.02%, 2.49% and 5.06%, and a smaller cost error than the ideal solution The cost error rates for the three typical days are only 1.99%, 3.60% and 3.46%. In summary, the collaborative autonomous planning and operation method proposed in this paper has great advantages in terms of economy, reliability, energy efficiency and environmental protection.

Suggested Citation

  • Du, Sipeng & Wu, Di & Dai, Zhong & Li, Guiqiang & Lahaxibai, Shala, 2023. "Regional collaborative planning equipped with shared energy storage under multi-time scale rolling optimisation method," Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010745
    DOI: 10.1016/j.energy.2023.127680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223010745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    2. Wu, Di & Han, Zhonghe & Liu, Zhijian & Li, Peng & Ma, Fanfan & Zhang, Han & Yin, Yunxing & Yang, Xinyan, 2021. "Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system," Energy, Elsevier, vol. 217(C).
    3. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    4. Qin, Yuxiao & Liu, Pei & Li, Zheng, 2022. "Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Liu, Zhijian & Fan, Guangyao & Sun, Dekang & Wu, Di & Guo, Jiacheng & Zhang, Shicong & Yang, Xinyan & Lin, Xianping & Ai, Lei, 2022. "A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings," Energy, Elsevier, vol. 239(PE).
    6. Li, Peng & Wang, Zixuan & Wang, Jiahao & Guo, Tianyu & Yin, Yunxing, 2021. "A multi-time-space scale optimal operation strategy for a distributed integrated energy system," Applied Energy, Elsevier, vol. 289(C).
    7. Gan, Wei & Yan, Mingyu & Yao, Wei & Guo, Jianbo & Ai, Xiaomeng & Fang, Jiakun & Wen, Jinyu, 2021. "Decentralized computation method for robust operation of multi-area joint regional-district integrated energy systems with uncertain wind power," Applied Energy, Elsevier, vol. 298(C).
    8. Walker, Awnalisa & Kwon, Soongeol, 2021. "Analysis on impact of shared energy storage in residential community: Individual versus shared energy storage," Applied Energy, Elsevier, vol. 282(PA).
    9. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
    10. Zhang, Lihui & Li, Songrui & Nie, Qingyun & Hu, Yitang, 2022. "A two-stage benefit optimization and multi-participant benefit-sharing strategy for hybrid renewable energy systems in rural areas under carbon trading," Renewable Energy, Elsevier, vol. 189(C), pages 744-761.
    11. Walker, Awnalisa & Kwon, Soongeol, 2021. "Design of structured control policy for shared energy storage in residential community: A stochastic optimization approach," Applied Energy, Elsevier, vol. 298(C).
    12. Wu, Min & Xu, Jiazhu & Zeng, Linjun & Li, Chang & Liu, Yuxing & Yi, Yuqin & Wen, Ming & Jiang, Zhuohan, 2022. "Two-stage robust optimization model for park integrated energy system based on dynamic programming," Applied Energy, Elsevier, vol. 308(C).
    13. Qin, Chao & Yan, Qingyou & He, Gang, 2019. "Integrated energy systems planning with electricity, heat and gas using particle swarm optimization," Energy, Elsevier, vol. 188(C).
    14. Qiao, Yiyang & Hu, Fan & Xiong, Wen & Guo, Zihao & Zhou, Xiaoguang & Li, Yajun, 2023. "Multi-objective optimization of integrated energy system considering installation configuration," Energy, Elsevier, vol. 263(PC).
    15. Zhang, Guoqing & Wang, Jiangjiang & Ren, Fukang & Liu, Yi & Dong, Fuxiang, 2021. "Collaborative optimization for multiple energy stations in distributed energy network based on electricity and heat interchanges," Energy, Elsevier, vol. 222(C).
    16. Abdollahi, Elnaz & Lahdelma, Risto, 2020. "Decomposition method for optimizing long-term multi-area energy production with heat and power storages," Applied Energy, Elsevier, vol. 260(C).
    17. Mu, Chenlu & Ding, Tao & Qu, Ming & Zhou, Quan & Li, Fangxing & Shahidehpour, Mohammad, 2020. "Decentralized optimization operation for the multiple integrated energy systems with energy cascade utilization," Applied Energy, Elsevier, vol. 280(C).
    18. Zhou, Yuan & Ma, Yanpeng & Wang, Jiangjiang & Lu, Shuaikang, 2021. "Collaborative planning of spatial layouts of distributed energy stations and networks: A case study," Energy, Elsevier, vol. 234(C).
    19. Liu, Wenxia & Huang, Yuchen & Li, Zhengzhou & Yang, Yue & Yi, Fang, 2020. "Optimal allocation for coupling device in an integrated energy system considering complex uncertainties of demand response," Energy, Elsevier, vol. 198(C).
    20. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    21. Ding, Yan & Wang, Qiaochu & Tian, Zhe & Lyu, Yacong & Li, Feng & Yan, Zhe & Xia, Xi, 2023. "A graph-theory-based dynamic programming planning method for distributed energy system planning: Campus area as a case study," Applied Energy, Elsevier, vol. 329(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Xiaoling & Zhang, Huqing & Fan, Lurong & Zhang, Zhe & Peña-Mora, Feniosky, 2023. "Planning shared energy storage systems for the spatio-temporal coordination of multi-site renewable energy sources on the power generation side," Energy, Elsevier, vol. 282(C).
    2. Hu, Junjie & Wang, Yudong & Dong, Lei, 2024. "Low carbon-oriented planning of shared energy storage station for multiple integrated energy systems considering energy-carbon flow and carbon emission reduction," Energy, Elsevier, vol. 290(C).
    3. Wei, Changqi & Wang, Jiangjiang & Zhou, Yuan & Li, Yuxin & Liu, Weiliang, 2024. "Co-optimization of system configurations and energy scheduling of multiple community integrated energy systems to improve photovoltaic self-consumption," Renewable Energy, Elsevier, vol. 225(C).
    4. Huang, Jing & Jin, Yi & Li, Guiqiang, 2024. "Two-tier synergistic optimization of integrated energy systems based on comprehensive self-adaptive operation strategy," Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Changqi & Wang, Jiangjiang & Zhou, Yuan & Li, Yuxin & Liu, Weiliang, 2024. "Co-optimization of system configurations and energy scheduling of multiple community integrated energy systems to improve photovoltaic self-consumption," Renewable Energy, Elsevier, vol. 225(C).
    2. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    3. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    4. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    5. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).
    6. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    7. Zhaonian Ye & Yongzhen Wang & Kai Han & Changlu Zhao & Juntao Han & Yilin Zhu, 2023. "Bi-Objective Optimization and Emergy Analysis of Multi-Distributed Energy System Considering Shared Energy Storage," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    8. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    9. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    10. Siqin, Zhuoya & Niu, DongXiao & Li, MingYu & Gao, Tian & Lu, Yifan & Xu, Xiaomin, 2022. "Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and profit allocation," Applied Energy, Elsevier, vol. 321(C).
    11. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
    12. Dong, Haoxin & Shan, Zijing & Zhou, Jianli & Xu, Chuanbo & Chen, Wenjun, 2023. "Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage," Applied Energy, Elsevier, vol. 351(C).
    13. Chen, Changming & Wu, Xueyan & Li, Yan & Zhu, Xiaojun & Li, Zesen & Ma, Jien & Qiu, Weiqiang & Liu, Chang & Lin, Zhenzhi & Yang, Li & Wang, Qin & Ding, Yi, 2021. "Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages," Applied Energy, Elsevier, vol. 302(C).
    14. Liu, Zhijian & Li, Ying & Fan, Guangyao & Wu, Di & Guo, Jiacheng & Jin, Guangya & Zhang, Shicong & Yang, Xinyan, 2022. "Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios," Energy, Elsevier, vol. 247(C).
    15. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan, 2024. "A new shared energy storage business model for data center clusters considering energy storage degradation," Renewable Energy, Elsevier, vol. 225(C).
    16. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    17. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    18. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong, 2023. "Multi-stage distributionally robust optimization for hybrid energy storage in regional integrated energy system considering robustness and nonanticipativity," Energy, Elsevier, vol. 277(C).
    19. Guo, Jiacheng & Liu, Zhijian & Li, Ying & Wu, Di & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua & Zhang, Peiwen, 2022. "Thermodynamic performance analyses and optimization design method of a novel distributed energy system coupled with hybrid-energy storage," Renewable Energy, Elsevier, vol. 182(C), pages 1182-1200.
    20. Jianan Liu & Hao Yu & Haoran Ji & Kunpeng Zhao & Chaoxian Lv & Peng Li, 2020. "Optimal Operation Strategy of a Community Integrated Energy System Constrained by the Seasonal Balance of Ground Source Heat Pumps," Sustainability, MDPI, vol. 12(11), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.