IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223023708.html
   My bibliography  Save this article

Planning shared energy storage systems for the spatio-temporal coordination of multi-site renewable energy sources on the power generation side

Author

Listed:
  • Song, Xiaoling
  • Zhang, Huqing
  • Fan, Lurong
  • Zhang, Zhe
  • Peña-Mora, Feniosky

Abstract

The application prospects of shared energy storage services have gained widespread recognition due to the increasing use of renewable energy sources. However, the decision-making process for connecting different renewable energy generators and determining the appropriate size of the shared energy storage capacity becomes a complex and interrelated problem when considering the multi-site spatio-temporal characteristics. This paper presents an optimal planning and operation architecture for multi-site renewable energy generators that share an energy storage system on the generation side. Furthermore, an economic-environmental model is proposed to minimize the costs associated with the energy system infrastructure while maintaining a high penetration rate of renewable energy. The centralized multi-objective model allows renewable energy generators to make cost-optimal planning decisions for connecting to the shared energy storage station, while also optimizing the size of the storage capacity to maximize renewable energy generation and minimize costs. The Non-dominated Sorting Genetic Algorithm-II is employed in a centralized manner to solve the multi-objective nonlinear model. Numerical experiments are conducted to demonstrate the economic and environmental benefits of the proposed system. Therefore, this method is highly recommended for implementation on the generation side.

Suggested Citation

  • Song, Xiaoling & Zhang, Huqing & Fan, Lurong & Zhang, Zhe & Peña-Mora, Feniosky, 2023. "Planning shared energy storage systems for the spatio-temporal coordination of multi-site renewable energy sources on the power generation side," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023708
    DOI: 10.1016/j.energy.2023.128976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Jianwei & Wang, Yaping & Huang, Ningbo & Wei, Lingli & Zhang, Zixuan, 2022. "Optimal site selection study of wind-photovoltaic-shared energy storage power stations based on GIS and multi-criteria decision making: A two-stage framework," Renewable Energy, Elsevier, vol. 201(P1), pages 1139-1162.
    2. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    3. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.
    4. Rodrigues, Daniel L. & Ye, Xianming & Xia, Xiaohua & Zhu, Bing, 2020. "Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community," Applied Energy, Elsevier, vol. 262(C).
    5. Stanley, Andrew P.J. & King, Jennifer, 2022. "Optimizing the physical design and layout of a resilient wind, solar, and storage hybrid power plant," Applied Energy, Elsevier, vol. 317(C).
    6. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    7. Wu, Di & Han, Zhonghe & Liu, Zhijian & Li, Peng & Ma, Fanfan & Zhang, Han & Yin, Yunxing & Yang, Xinyan, 2021. "Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system," Energy, Elsevier, vol. 217(C).
    8. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    9. Zhang, Wen-Yi & Chen, Yue & Wang, Yi & Xu, Yunjian, 2023. "Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid," Energy, Elsevier, vol. 274(C).
    10. Keck, Felix & Lenzen, Manfred, 2021. "Drivers and benefits of shared demand-side battery storage – an Australian case study," Energy Policy, Elsevier, vol. 149(C).
    11. Horasan, Muhammed Bilal & Kilic, Huseyin Selcuk, 2022. "A multi-objective decision-making model for renewable energy planning: The case of Turkey," Renewable Energy, Elsevier, vol. 193(C), pages 484-504.
    12. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Auguadra, Marco & Ribó-Pérez, David & Gómez-Navarro, Tomás, 2023. "Planning the deployment of energy storage systems to integrate high shares of renewables: The Spain case study," Energy, Elsevier, vol. 264(C).
    14. Al-Ghussain, Loiy & Abubaker, Ahmad M. & Darwish Ahmad, Adnan, 2021. "Superposition of Renewable-Energy Supply from Multiple Sites Maximizes Demand-Matching: Towards 100% Renewable Grids in 2050," Applied Energy, Elsevier, vol. 284(C).
    15. Wang, Chutong & Zhang, Xiaoyan & Wang, Yucui & Xiong, Houbo & Ding, Xi & Guo, Chuangxin, 2023. "Pricing method of electric-thermal heterogeneous shared energy storage service," Energy, Elsevier, vol. 281(C).
    16. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.
    17. Yeganefar, Ali & Amin-Naseri, Mohammad Reza & Sheikh-El-Eslami, Mohammad Kazem, 2020. "Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources," Applied Energy, Elsevier, vol. 272(C).
    18. Du, Sipeng & Wu, Di & Dai, Zhong & Li, Guiqiang & Lahaxibai, Shala, 2023. "Regional collaborative planning equipped with shared energy storage under multi-time scale rolling optimisation method," Energy, Elsevier, vol. 277(C).
    19. Hu, Jing & Li, Yu & Wörman, Anders & Zhang, Bingyao & Ding, Wei & Zhou, Huicheng, 2023. "Reducing energy storage demand by spatial-temporal coordination of multienergy systems," Applied Energy, Elsevier, vol. 329(C).
    20. Li, Shenglin & Zhu, Jizhong & Chen, Ziyu & Luo, Tengyan, 2021. "Double-layer energy management system based on energy sharing cloud for virtual residential microgrid," Applied Energy, Elsevier, vol. 282(PA).
    21. Hlalele, Thabo G. & Naidoo, Raj M. & Bansal, Ramesh C. & Zhang, Jiangfeng, 2020. "Multi-objective stochastic economic dispatch with maximal renewable penetration under renewable obligation," Applied Energy, Elsevier, vol. 270(C).
    22. Henni, Sarah & Staudt, Philipp & Weinhardt, Christof, 2021. "A sharing economy for residential communities with PV-coupled battery storage: Benefits, pricing and participant matching," Applied Energy, Elsevier, vol. 301(C).
    23. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Gao, Chong, 2023. "Multi-stage distributionally robust optimization for hybrid energy storage in regional integrated energy system considering robustness and nonanticipativity," Energy, Elsevier, vol. 277(C).
    24. Hu, Yuan & Bie, Zhaohong & Ding, Tao & Lin, Yanling, 2016. "An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning," Applied Energy, Elsevier, vol. 167(C), pages 280-293.
    25. Nur Sunar & John R. Birge, 2019. "Strategic Commitment to a Production Schedule with Uncertain Supply and Demand: Renewable Energy in Day-Ahead Electricity Markets," Management Science, INFORMS, vol. 65(2), pages 714-734, February.
    26. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    27. Huang, Pei & Sun, Yongjun & Lovati, Marco & Zhang, Xingxing, 2021. "Solar-photovoltaic-power-sharing-based design optimization of distributed energy storage systems for performance improvements," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milad Mohammadyari & Mohsen Eskandari, 2024. "Stochastic Convex Cone Programming for Joint Optimal BESS Operation and Q-Placement in Net-Zero Microgrids," Energies, MDPI, vol. 17(17), pages 1-16, August.
    2. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Dasí-Crespo, Daniel, 2023. "Optimal sizing and design of renewable power plants in rural microgrids using multi-objective particle swarm optimization and branch and bound methods," Energy, Elsevier, vol. 284(C).
    3. José Luis Muñoz-Pincheira & Lautaro Salazar & Felipe Sanhueza & Armin Lüer-Villagra, 2024. "Temporal Complementarity Analysis of Wind and Solar Power Potential for Distributed Hybrid Electric Generation in Chile," Energies, MDPI, vol. 17(8), pages 1-23, April.
    4. Kuoyi Lin & Bin Li, 2024. "A Cloud- and Game Model-Based Approach to Project Evaluations of Sustainable Power Supply Investments," Sustainability, MDPI, vol. 16(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    2. He, Ye & Wu, Hongbin & Wu, Andrew Y. & Li, Peng & Ding, Ming, 2024. "Optimized shared energy storage in a peer-to-peer energy trading market: Two-stage strategic model regards bargaining and evolutionary game theory," Renewable Energy, Elsevier, vol. 224(C).
    3. Bian, Yifan & Xie, Lirong & Ye, Jiahao & Ma, Lan, 2024. "A new shared energy storage business model for data center clusters considering energy storage degradation," Renewable Energy, Elsevier, vol. 225(C).
    4. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Hong, Juwon & Jeoung, Jaewon & Hong, Taehoon, 2023. "Multi-objective sizing and real-time scheduling of battery energy storage in energy-sharing community based on reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    5. Chen, Xi & Liu, Zhongbing & Wang, Pengcheng & Li, Benjia & Liu, Ruimiao & Zhang, Ling & Zhao, Chengliang & Luo, Songqin, 2023. "Multi-objective optimization of battery capacity of grid-connected PV-BESS system in hybrid building energy sharing community considering time-of-use tariff," Applied Energy, Elsevier, vol. 350(C).
    6. Hu, Junjie & Wang, Yudong & Dong, Lei, 2024. "Low carbon-oriented planning of shared energy storage station for multiple integrated energy systems considering energy-carbon flow and carbon emission reduction," Energy, Elsevier, vol. 290(C).
    7. Song, Xiaoling & Wang, Yudong & Zhang, Zhe & Shen, Charles & Peña-Mora, Feniosky, 2021. "Economic-environmental equilibrium-based bi-level dispatch strategy towards integrated electricity and natural gas systems," Applied Energy, Elsevier, vol. 281(C).
    8. Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    10. Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
    11. Zhaonian Ye & Yongzhen Wang & Kai Han & Changlu Zhao & Juntao Han & Yilin Zhu, 2023. "Bi-Objective Optimization and Emergy Analysis of Multi-Distributed Energy System Considering Shared Energy Storage," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    12. Kerscher, Selina & Koirala, Arpan & Arboleya, Pablo, 2024. "Grid-optimal energy community planning from a systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Qin Wang & Jincan Zeng & Beibei Cheng & Minwei Liu & Guori Huang & Xi Liu & Gengsheng He & Shangheng Yao & Peng Wang & Longxi Li, 2024. "A Cooperative Game Approach for Optimal Design of Shared Energy Storage System," Sustainability, MDPI, vol. 16(17), pages 1-19, August.
    14. Zhang, Wen-Yi & Chen, Yue & Wang, Yi & Xu, Yunjian, 2023. "Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid," Energy, Elsevier, vol. 274(C).
    15. Sturmberg, B.C.P. & Shaw, M.E. & Mediwaththe, C.P. & Ransan-Cooper, H. & Weise, B. & Thomas, M. & Blackhall, L., 2021. "A mutually beneficial approach to electricity network pricing in the presence of large amounts of solar power and community-scale energy storage," Energy Policy, Elsevier, vol. 159(C).
    16. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    17. Zhang, Wen-Yi & Zheng, Boshen & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2022. "Peer-to-peer transactive mechanism for residential shared energy storage," Energy, Elsevier, vol. 246(C).
    18. Carson Duan, 2023. "A State-of-the-Art Review of Sharing Economy Business Models and a Forecast of Future Research Directions for Sustainable Development: A Bibliometric Analysis Approach," Sustainability, MDPI, vol. 15(5), pages 1-37, March.
    19. Ai, Wenqing & Deng, Tianhu & Qi, Wei, 2022. "Farsighted stability of distributed energy resource sharing," Applied Energy, Elsevier, vol. 326(C).
    20. Wei, Changqi & Wang, Jiangjiang & Zhou, Yuan & Li, Yuxin & Liu, Weiliang, 2024. "Co-optimization of system configurations and energy scheduling of multiple community integrated energy systems to improve photovoltaic self-consumption," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.