IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v276y2023ics0360544223008186.html
   My bibliography  Save this article

An improved reliability assessment method for lithium-ion battery system considering imbalanced current and uneven cooling

Author

Listed:
  • Zhu, Wenhao
  • Lei, Fei
  • Zhong, Hao
  • Wang, Dongjie

Abstract

The safety and reliability of lithium-ion battery system is the main safeguard promoting widespread applications. However, the reliability assessment of the battery system is still insufficient due to dynamic changes and ageing propagation between cells. To evaluate the reliability of battery system accurately, an improved reliability assessment method integrating the multi-physics model and universal generating function (UGF) method is proposed, taking imbalanced current and uneven cooling into account. In the multi-physics model, an electric-thermal-flow-ageing coupling model is established. The UGF-based method is employed to evaluate the multi-state system reliability of battery system. Based on the reliability method, the interaction influence of imbalanced current and uneven cooling on the reliability of the battery system is analyzed contrastively. To explore the influence of parallel cells on reliability, different redundancy strategies are evaluated and analyzed. Meanwhile, suitable uneven cooling schemes are studied. The results show that the degradation rate of cells is accelerated while incorporated the imbalanced current and uneven cooling. Compared with the traditional reliability assessment, the maximum reliability deviation reaches approximately 1780 cycles. Unlike initial assumption, increasing the parallel cells does not always improve the reliability of battery packs due to the improvement of probability of current imbalance.

Suggested Citation

  • Zhu, Wenhao & Lei, Fei & Zhong, Hao & Wang, Dongjie, 2023. "An improved reliability assessment method for lithium-ion battery system considering imbalanced current and uneven cooling," Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223008186
    DOI: 10.1016/j.energy.2023.127424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Junqiu & Jin, Xin & Xiong, Rui, 2017. "Multi-objective optimization study of energy management strategy and economic analysis for a range-extended electric bus," Applied Energy, Elsevier, vol. 194(C), pages 798-807.
    2. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
    3. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    4. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    5. Liu, Xinhua & Ai, Weilong & Naylor Marlow, Max & Patel, Yatish & Wu, Billy, 2019. "The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs," Applied Energy, Elsevier, vol. 248(C), pages 489-499.
    6. Hosseinzadeh, Elham & Arias, Sebastian & Krishna, Muthu & Worwood, Daniel & Barai, Anup & Widanalage, Dhammika & Marco, James, 2021. "Quantifying cell-to-cell variations of a parallel battery module for different pack configurations," Applied Energy, Elsevier, vol. 282(PA).
    7. Liu, Zhitao & Tan, CherMing & Leng, Feng, 2015. "A reliability-based design concept for lithium-ion battery pack in electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 169-177.
    8. Gandoman, Foad H. & Ahmadi, Abdollah & Bossche, Peter Van den & Van Mierlo, Joeri & Omar, Noshin & Nezhad, Ali Esmaeel & Mavalizadeh, Hani & Mayet, Clément, 2019. "Status and future perspectives of reliability assessment for electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 1-16.
    9. Akinlabi, A.A. Hakeem & Solyali, Davut, 2020. "Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    10. Liu, Yuanzhi & Zhang, Jie, 2020. "Self-adapting J-type air-based battery thermal management system via model predictive control," Applied Energy, Elsevier, vol. 263(C).
    11. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shumao & Bao, Wenkang & Sun, Yuedong & Li, Xiangjun & Dai, Feng & Hua, Jianfeng & Zheng, Yuejiu, 2024. "Current sensorless diagnosis of the cell internal resistance consistency in a parallel module using relaxation voltage," Energy, Elsevier, vol. 301(C).
    2. Aayushi Chachra & Mangey Ram & Akshay Kumar, 2024. "Fuzzy reliability framework under hesitant and dual hesitant fuzzy sets to air conditioning system," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 603-627, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    3. Foad H. Gandoman & Emad M. Ahmed & Ziad M. Ali & Maitane Berecibar & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    4. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Robby Dwianto Widyantara & Muhammad Adnan Naufal & Poetro Lebdo Sambegoro & Ignatius Pulung Nurprasetio & Farid Triawan & Djati Wibowo Djamari & Asep Bayu Dani Nandiyanto & Bentang Arief Budiman & Muh, 2021. "Low-Cost Air-Cooling System Optimization on Battery Pack of Electric Vehicle," Energies, MDPI, vol. 14(23), pages 1-14, November.
    6. Wang, Shumao & Bao, Wenkang & Sun, Yuedong & Li, Xiangjun & Dai, Feng & Hua, Jianfeng & Zheng, Yuejiu, 2024. "Current sensorless diagnosis of the cell internal resistance consistency in a parallel module using relaxation voltage," Energy, Elsevier, vol. 301(C).
    7. Astaneh, Majid & Andric, Jelena & Löfdahl, Lennart & Stopp, Peter, 2022. "Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications," Energy, Elsevier, vol. 239(PB).
    8. Chen, Haosen & Fan, Jinbao & Zhang, Mingliang & Feng, Xiaolong & Zhong, Ximing & He, Jianchao & Ai, Shigang, 2023. "Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries," Applied Energy, Elsevier, vol. 332(C).
    9. Mohammad Al-Amin & Anup Barai & T.R. Ashwin & James Marco, 2021. "An Insight to the Degradation Behaviour of the Parallel Connected Lithium-Ion Battery Cells," Energies, MDPI, vol. 14(16), pages 1-18, August.
    10. Li, Da & Zhang, Lei & Zhang, Zhaosheng & Liu, Peng & Deng, Junjun & Wang, Qiushi & Wang, Zhenpo, 2023. "Battery safety issue detection in real-world electric vehicles by integrated modeling and voltage abnormality," Energy, Elsevier, vol. 284(C).
    11. Xie, Lin & Ustolin, Federico & Lundteigen, Mary Ann & Li, Tian & Liu, Yiliu, 2022. "Performance analysis of safety barriers against cascading failures in a battery pack," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    12. Song, Ziyou & Yang, Niankai & Lin, Xinfan & Pinto Delgado, Fanny & Hofmann, Heath & Sun, Jing, 2022. "Progression of cell-to-cell variation within battery modules under different cooling structures," Applied Energy, Elsevier, vol. 312(C).
    13. Weng, Jingwen & Xiao, Changren & Ouyang, Dongxu & Yang, Xiaoqing & Chen, Mingyi & Zhang, Guoqing & Yuen, Richard Kwok Kit & Wang, Jian, 2022. "Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives," Energy, Elsevier, vol. 239(PC).
    14. Wu, Bing & Tang, Yuheng & Yan, Xinping & Guedes Soares, Carlos, 2021. "Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    15. Hwang, Foo Shen & Confrey, Thomas & Reidy, Colin & Picovici, Dorel & Callaghan, Dean & Culliton, David & Nolan, Cathal, 2024. "Review of battery thermal management systems in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Zhang, Xiaoxi & Pan, Yongjun & Xiong, Yue & Zhang, Yongzhi & Tang, Mao & Dai, Wei & Liu, Binghe & Hou, Liang, 2024. "Deep learning-based vibration stress and fatigue-life prediction of a battery-pack system," Applied Energy, Elsevier, vol. 357(C).
    17. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    18. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    19. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    20. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223008186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.