IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v274y2023ics0360544223008009.html
   My bibliography  Save this article

Experimental evaluation of the effect of mechanical subcooling on a hydrocarbon heat pump system

Author

Listed:
  • Shiravi, Amir hossein
  • Ghanbarpour, Morteza
  • Palm, Bjorn

Abstract

In addition to the progressive movement of countries towards the use of renewable energy sources, efficient energy consumption is another important goal set by the International Energy Agency. In heat pump technology, the use of mechanical subcooling system has a high potential for this purpose. In this experimental study, the impact of using a mechanical subcooling cycle on the performance of a heat pump system is investigated. The system is designed to supply heat at condensing temperatures of 50, 60 and 70 °C. Propane and isobutane are used as low GWP refrigerants in the main and secondary cycles, respectively. The results revealed that both the COP and heating capacity of the system are increased by adding the mechanical subcooling cycle up to 15.1% and 34%, respectively. To express the improvement of the system performance by means of the TEWI index, a reduction of 9–13% is calculated when the mechanical subcooling cycle is included. It is also of interest that the cooling coefficient of performance (COP2) is improved by adjoining a secondary cycle as a liquid subcooler. An optimal power ratio between the basic cycle and the secondary cycle was obtained, which is consistent with the simulation results.

Suggested Citation

  • Shiravi, Amir hossein & Ghanbarpour, Morteza & Palm, Bjorn, 2023. "Experimental evaluation of the effect of mechanical subcooling on a hydrocarbon heat pump system," Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223008009
    DOI: 10.1016/j.energy.2023.127406
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008009
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    2. Mota-Babiloni, Adrián & Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Molés, Francisco & Amat-Albuixech, Marta & Barragán-Cervera, Ángel, 2018. "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, Elsevier, vol. 165(PB), pages 1248-1258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wichean Singmai & Kasemsil Onthong & Tongchana Thongtip, 2023. "Experimental Investigation of the Improvement Potential of a Heat Pump Equipped with a Two-Phase Ejector," Energies, MDPI, vol. 16(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Yang, Junqin & Zhao, Hui & Li, Chenchen & Li, Xiuwei, 2021. "A direct energy reuse strategy for absorption air-conditioning system based on electrode regeneration method," Renewable Energy, Elsevier, vol. 168(C), pages 353-364.
    3. Angelo Maiorino & Ciro Aprea & Manuel Gesù Del Duca, 2021. "A Flexible Top-Down Numerical Modeling of an Air-Cooled Finned-Tube CO 2 Trans-Critical Gas Cooler," Energies, MDPI, vol. 14(22), pages 1-30, November.
    4. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    5. Dai, Baomin & Liu, Xiao & Liu, Shengchun & Wang, Dabiao & Meng, Chenyang & Wang, Qi & Song, Yifan & Zou, Tonghua, 2022. "Life cycle performance evaluation of cascade-heating high temperature heat pump system for waste heat utilization: Energy consumption, emissions and financial analyses," Energy, Elsevier, vol. 261(PB).
    6. Jakub Szymiczek & Krzysztof Szczotka & Marian Banaś & Przemysław Jura, 2022. "Efficiency of a Compressor Heat Pump System in Different Cycle Designs: A Simulation Study for Low-Enthalpy Geothermal Resources," Energies, MDPI, vol. 15(15), pages 1-19, July.
    7. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Hongzeng Ji & Jinchen Pei & Jingyang Cai & Chen Ding & Fen Guo & Yichun Wang, 2023. "Review of Recent Advances in Transcritical CO 2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field," Energies, MDPI, vol. 16(10), pages 1-21, May.
    9. Bai, Tao & Yan, Gang & Yu, Jianlin, 2019. "Thermodynamic assessment of a condenser outlet split ejector-based high temperature heat pump cycle using various low GWP refrigerants," Energy, Elsevier, vol. 179(C), pages 850-862.
    10. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Lixing Zheng & Yiyan Zhang & Lifen Hao & Haojie Lian & Jianqiang Deng & Wei Lu, 2022. "Modelling, Optimization, and Experimental Studies of Refrigeration CO 2 Ejectors: A Review," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
    12. Yikai Wang & Yifan He & Yulong Song & Xiang Yin & Feng Cao & Xiaolin Wang, 2021. "Energy and Exergy Analysis of the Air Source Transcritical CO 2 Heat Pump Water Heater Using CO 2 -Based Mixture as Working Fluid," Energies, MDPI, vol. 14(15), pages 1-18, July.
    13. Hou, Yaxiang & Wu, Weidong & Li, Zhenbo & Yu, Xinyi & Zeng, Tao, 2023. "Effect of drying air supply temperature and internal heat exchanger on performance of a novel closed-loop transcritical CO2 air source heat pump drying system," Renewable Energy, Elsevier, vol. 219(P2).
    14. Yulong Song & Hongsheng Xie & Mengying Yang & Xiangyu Wei & Feng Cao & Xiang Yin, 2023. "A Comprehensive Assessment of the Refrigerant Charging Amount on the Global Performance of a Transcritical CO 2 -Based Bus Air Conditioning and Heat Pump System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    15. Yu, Binbin & Long, Junan & Zhang, Yingjing & Ouyang, Hongsheng & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2024. "Life cycle climate performance evaluation (LCCP) of electric vehicle heat pumps using low-GWP refrigerants towards China's carbon neutrality," Applied Energy, Elsevier, vol. 353(PA).
    16. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    17. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.
    18. Zhihua Wang & Yujia Zhang & Fenghao Wang & Guichen Li & Kaiwen Xu, 2021. "Performance Optimization and Economic Evaluation of CO 2 Heat Pump Heating System Coupled with Thermal Energy Storage," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    19. Giuseppe Emmi & Sara Bordignon & Laura Carnieletto & Michele De Carli & Fabio Poletto & Andrea Tarabotti & Davide Poletto & Antonio Galgaro & Giulia Mezzasalma & Adriana Bernardi, 2020. "A Novel Ground-Source Heat Pump with R744 and R1234ze as Refrigerants," Energies, MDPI, vol. 13(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223008009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.