Optimal design for solar greenhouses based on climate conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.06.090
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Min, Xinyuan & Sok, Jaap & de Zwart, Feije & Oude Lansink, Alfons, 2024. "Multi-stakeholder multi-objective greenhouse design optimization," Agricultural Systems, Elsevier, vol. 215(C).
- Shuyao Dong & Md Shamim Ahamed & Chengwei Ma & Huiqing Guo, 2021. "A Time-Dependent Model for Predicting Thermal Environment of Mono-Slope Solar Greenhouses in Cold Regions," Energies, MDPI, vol. 14(18), pages 1-19, September.
- Chang, Zehui & Liu, Xuedong & Guo, Ziheng & Hou, Jing & Su, Yuehong, 2024. "A novel integration of supplementary photovoltaic module into compound parabolic concentrator for accelerated defrosting of solar collecting system," Renewable Energy, Elsevier, vol. 225(C).
- Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Araceli Peña-Fernández & Manuel A. Colón-Reynoso & Pilar Mazuela, 2024. "Geometric Analysis of Greenhouse Roofs for Energy Efficiency Optimization and Condensation Drip Reduction," Agriculture, MDPI, vol. 14(2), pages 1-17, January.
- Olfati, Mohammad & Bahiraei, Mehdi & Nazari, Saeed & Veysi, Farzad, 2020. "A comprehensive assessment of low-temperature preheating process in natural gas pressure reduction stations to better benefit from solar energy," Energy, Elsevier, vol. 209(C).
- He, Xueying & Wang, Pingzhi & Song, Weitang & Wu, Gang & Ma, Chengwei & Li, Ming, 2022. "Experimental study on the feasibility and thermal performance of a multifunctional air conditioning system using surplus air thermal energy to heat a Chinese solar greenhouse," Renewable Energy, Elsevier, vol. 198(C), pages 1148-1161.
- Liu, Xingan & Wu, Xiaoyang & Xia, Tianyang & Fan, Zilong & Shi, Wenbin & Li, Yiming & Li, Tianlai, 2022. "New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions," Energy, Elsevier, vol. 242(C).
- Xiao Wu & Hong Li & Siyu Sang & Anhui He & Yimei Re & Hongjun Xu, 2023. "Performance Analysis and Selection of Chinese Solar Greenhouses in Xinjiang Desert Area," Agriculture, MDPI, vol. 13(2), pages 1-14, January.
- Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
- Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
- Thaddaeus Obaji Ariom & Elodie Dimon & Eva Nambeye & Ndèye Seynabou Diouf & Oludotun Olusegun Adelusi & Sofiane Boudalia, 2022. "Climate-Smart Agriculture in African Countries: A Review of Strategies and Impacts on Smallholder Farmers," Sustainability, MDPI, vol. 14(18), pages 1-32, September.
- Zhang, Kai & Yu, Jihua & Ren, Yan, 2022. "Research on the size optimization of photovoltaic panels and integrated application with Chinese solar greenhouses," Renewable Energy, Elsevier, vol. 182(C), pages 536-551.
- Sadeghi, Seyed Hamidreza & Sharifi Moghadam, Ehsan & Delavar, Majid & Zarghami, Mahdi, 2020. "Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale," Agricultural Water Management, Elsevier, vol. 233(C).
- Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).
More about this item
Keywords
Solar greenhouse; Solar thermal; Heat transfer model; Optimization; Solar energy; Energy modeling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1255-1265. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.