IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v26y2013icp540-548.html
   My bibliography  Save this article

Passive solar energy utilization: A review of cross-section building parameter selection for Chinese solar greenhouses

Author

Listed:
  • Tong, Guohong
  • Christopher, David M.
  • Li, Tianlai
  • Wang, Tieliang

Abstract

Chinese solar greenhouses (CSG) are fully passive solar greenhouses for growing vegetables without auxiliary heating during the winter. The building parameters then have an important effect on the solar energy utilization and the temperatures in the greenhouse. This paper reviews greenhouse building design research and development that is leading to improved solar energy usage with consideration of various design parameters involving the building span, height, south roof shape and angle, wall thickness and composition, and north roof length and angle. Most studies have focused on the influence of the building span and height on the inner thermal environment through experimental and numerical models, the optimum south roof shape that allows the maximum amount of beam radiation into the building and the north wall thickness and configuration that all markedly influenced the solar energy absorption, storage and release. The building parameter selection and the numerical methods used to model Chinese greenhouses introduced in this review will lead to improved designs of future CSG that maximize the solar energy utilization.

Suggested Citation

  • Tong, Guohong & Christopher, David M. & Li, Tianlai & Wang, Tieliang, 2013. "Passive solar energy utilization: A review of cross-section building parameter selection for Chinese solar greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 540-548.
  • Handle: RePEc:eee:rensus:v:26:y:2013:i:c:p:540-548
    DOI: 10.1016/j.rser.2013.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113004036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    3. Bastien, Diane & Athienitis, Andreas K., 2018. "Passive thermal energy storage, part 1: Design concepts and metrics," Renewable Energy, Elsevier, vol. 115(C), pages 1319-1327.
    4. He, Xueying & Wang, Pingzhi & Song, Weitang & Wu, Gang & Ma, Chengwei & Li, Ming, 2022. "Experimental study on the feasibility and thermal performance of a multifunctional air conditioning system using surplus air thermal energy to heat a Chinese solar greenhouse," Renewable Energy, Elsevier, vol. 198(C), pages 1148-1161.
    5. Liu, Xingan & Wu, Xiaoyang & Xia, Tianyang & Fan, Zilong & Shi, Wenbin & Li, Yiming & Li, Tianlai, 2022. "New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions," Energy, Elsevier, vol. 242(C).
    6. Li Yang & Haijun Liu & Shabtai Cohen & Zhuangzhuang Gao, 2022. "Microclimate and Plant Transpiration of Tomato ( Solanum lycopersicum L.) in a Sunken Solar Greenhouse in North China," Agriculture, MDPI, vol. 12(2), pages 1-21, February.
    7. Chen, Chao & Ling, Haoshu & Zhai, Zhiqiang (John) & Li, Yin & Yang, Fengguang & Han, Fengtao & Wei, Shen, 2018. "Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses," Applied Energy, Elsevier, vol. 216(C), pages 602-612.
    8. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    9. Claire Flavin Hodge & Mary Rogers & Dan Handeen & Greg Schweser, 2018. "Yield of Leafy Greens and Microclimate in Deep Winter Greenhouse Production in Minnesota," Sustainability, MDPI, vol. 11(1), pages 1-11, December.
    10. Xia, Tianyang & Li, Yiming & Sun, Zhouping & Wan, Xiuchao & Sun, Dapeng & Wang, Lu & Liu, Xingan & Li, Tianlai, 2023. "Performance study of an active solar water curtain heating system for Chinese solar greenhouse heating in high latitudes regions," Applied Energy, Elsevier, vol. 332(C).
    11. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    12. Xu, Weiwei & Guo, Huiqing & Ma, Chengwei, 2022. "An active solar water wall for passive solar greenhouse heating," Applied Energy, Elsevier, vol. 308(C).
    13. Xiaodan Zhang & Jian Lv & Jianming Xie & Jihua Yu & Jing Zhang & Chaonan Tang & Jing Li & Zhixue He & Cheng Wang, 2020. "Solar Radiation Allocation and Spatial Distribution in Chinese Solar Greenhouses: Model Development and Application," Energies, MDPI, vol. 13(5), pages 1-27, March.
    14. Gang Wu & Hui Fang & Yi Zhang & Kun Li & Dan Xu, 2023. "Photothermal and Photovoltaic Utilization for Improving the Thermal Environment of Chinese Solar Greenhouses: A Review," Energies, MDPI, vol. 16(19), pages 1-29, September.
    15. Zhang, Yue & Henke, Michael & Li, Yiming & Yue, Xiang & Xu, Demin & Liu, Xingan & Li, Tianlai, 2020. "High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure," Renewable Energy, Elsevier, vol. 160(C), pages 730-745.
    16. Wu, Gang & Yang, Qichang & Zhang, Yi & Fang, Hui & Feng, Chaoqing & Zheng, Hongfei, 2020. "Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse," Energy, Elsevier, vol. 197(C).
    17. Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:26:y:2013:i:c:p:540-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.