IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223003080.html
   My bibliography  Save this article

Spotlighting the boosted energy storage capacity of CoFe2O4/Graphene nanoribbons: A promising positive electrode material for high-energy-density asymmetric supercapacitor

Author

Listed:
  • Xia, Changlei
  • Ren, Tiyao
  • Darabi, Rozhin
  • Shabani-Nooshabadi, Mehdi
  • Jaromír Klemeš, Jiří
  • Karaman, Ceren
  • Karimi, Fatemeh
  • Wu, Yingji
  • Kamyab, Hesam
  • Vasseghian, Yasser
  • Chelliapan, Shreeshivadasan

Abstract

CoFe2O4/Graphene Nanoribbons (GNRs) nanocomposite was successfully fabricated and utilised as an electrode active material for high-energy supercapacitor cells. Thanks to the outstanding physicochemical features of a graphene nanoribbon with excellent electrical conductivity and the synergistic effect with cobalt ferrite, as well as the pseudocapacitive effect. The CoFe2O4/GNRs nanohybrid offered an exceptional specific capacitance of 922 F g−1 (415 C g−1) at 1.0 A g−1 in 3.0 M KOH electrolyte in a standard 3-electrode set-up. Additionally, the impressive supercapacitive performance metrics showed that the suggested electrode had a distinctive morphology and could be a candidate for capacitive energy storage systems. These metrics included good cycle stability and 87% capacitance retention at the end of the 10,000th CV cycle. Moreover, the asymmetric supercapacitor cell (ASC) was designed by assembling CoFe2O4/GNRs and activated carbon (AC). The resultant ASC provided an improved specific capacitance of 487.85 F g−1 (683 C g−1) at 1.0 A g−1. At this current density value, the energy density and the power density values were computed as to be 132.8 Wh.kg−1 and 632.39 W kg−1. The highest power density was discovered to be 6730.76 W kg−1 at 10.0 A g−1, whereas the energy density was determined as 8.75 Wh.kg−1 at this current density. The results of the work proved that CoFe2O4/GNRs nanohybrids are up-and-coming electrode active materials for advanced electrochemical energy storage and conversion technologies.

Suggested Citation

  • Xia, Changlei & Ren, Tiyao & Darabi, Rozhin & Shabani-Nooshabadi, Mehdi & Jaromír Klemeš, Jiří & Karaman, Ceren & Karimi, Fatemeh & Wu, Yingji & Kamyab, Hesam & Vasseghian, Yasser & Chelliapan, Shrees, 2023. "Spotlighting the boosted energy storage capacity of CoFe2O4/Graphene nanoribbons: A promising positive electrode material for high-energy-density asymmetric supercapacitor," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003080
    DOI: 10.1016/j.energy.2023.126914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223003080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    2. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    3. Zhang, Jijun & Chen, Zexiang & Wang, Yan & Li, Hai, 2016. "Morphology-controllable synthesis of 3D CoNiO2 nano-networks as a high-performance positive electrode material for supercapacitors," Energy, Elsevier, vol. 113(C), pages 943-948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rane, Roshan P. & Shitole, Shivam S. & Varande, Satyavan P. & Patil, Bhavesh M. & Patil, Paresh M. & Patil, Vasant M. & Chaskar, Atul C. & Peshane, Sunil N. & Patil, Vishwanath R., 2024. "Upcycling waste graphite from spent LIBs for fabrication of novel mesoporous carbon and p-GN/BT based supercapacitor," Applied Energy, Elsevier, vol. 364(C).
    2. Zhang, Ziyun & Wang, Shilong & Chen, Xiaomin & Han, Sheng & Jiang, Jibo, 2024. "Built-in electric field and selenium vacancies synergistically enhance NiSe2@Co0.85Se high-performance supercapacitors," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takele Ferede Agajie & Armand Fopah-Lele & Ahmed Ali & Isaac Amoussou & Baseem Khan & Mahmoud Elsisi & Wirnkar Basil Nsanyuy & Om Prakash Mahela & Roberto Marcelo Álvarez & Emmanuel Tanyi, 2023. "Integration of Superconducting Magnetic Energy Storage for Fast-Response Storage in a Hybrid Solar PV-Biogas with Pumped-Hydro Energy Storage Power Plant," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    2. Xu, Le & Zhao, Yan & Lian, Jiabiao & Xu, Yuanguo & Bao, Jian & Qiu, Jingxia & Xu, Li & Xu, Hui & Hua, Mingqing & Li, Huaming, 2017. "Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density," Energy, Elsevier, vol. 123(C), pages 296-304.
    3. Reveles-Miranda, María & Ramirez-Rivera, Victor & Pacheco-Catalán, Daniella, 2024. "Hybrid energy storage: Features, applications, and ancillary benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Wang, Bin & Wang, Chaohui & Wang, Zhiyu & Ni, Siliang & Yang, Yixin & Tian, Pengyu, 2023. "Adaptive state of energy evaluation for supercapacitor in emergency power system of more-electric aircraft," Energy, Elsevier, vol. 263(PA).
    5. Liu, Hongwei & Wang, Yongzhen & Lv, Liang & Liu, Xiao & Wang, Ziqi & Liu, Jun, 2023. "Oxygen-enriched hierarchical porous carbons derived from lignite for high-performance supercapacitors," Energy, Elsevier, vol. 269(C).
    6. Melkiyur, Isacfranklin & Rathinam, Yuvakkumar & Kumar, P. Senthil & Sankaiya, Asaithambi & Pitchaiya, Selvakumar & Ganesan, Ravi & Velauthapillai, Dhayalan, 2023. "A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: Origin, fundamentals, present perspectives and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Zhang, Ziyun & Wang, Shilong & Chen, Xiaomin & Han, Sheng & Jiang, Jibo, 2024. "Built-in electric field and selenium vacancies synergistically enhance NiSe2@Co0.85Se high-performance supercapacitors," Energy, Elsevier, vol. 293(C).
    8. Li, Boyu & Fan, Xing & Yu, Senshen & Xia, Hongying & Nong, Yonghong & Bian, Junping & Sun, Mingyu & Zi, Wenhua, 2023. "Microwave heating of biomass waste residues for sustainable bioenergy and biomass materials preparation: A parametric simulation study," Energy, Elsevier, vol. 274(C).
    9. Rozhkov, Anton, 2024. "Applying graph theory to find key leverage points in the transition toward urban renewable energy systems," Applied Energy, Elsevier, vol. 361(C).
    10. Wang, Y. & Qiao, X. & Zhang, C. & Zhou, Xiangyang, 2018. "Self-discharge of a hybrid supercapacitor with incorporated galvanic cell components," Energy, Elsevier, vol. 159(C), pages 1035-1045.
    11. Golkhatmi, Sanaz Zarabi & Sedghi, Arman & Miankushki, Hoda Nourmohammadi & Khalaj, Maryam, 2021. "Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes," Energy, Elsevier, vol. 214(C).
    12. Jouhara, Hussam & Nieto, Nerea & Egilegor, Bakartxo & Zuazua, Josu & González, Eva & Yebra, Ignacio & Igesias, Alfredo & Delpech, Bertrand & Almahmoud, Sulaiman & Brough, Daniel & Malinauskaite, Jurgi, 2023. "Waste heat recovery solution based on a heat pipe heat exchanger for the aluminium die casting industry," Energy, Elsevier, vol. 266(C).
    13. Olabi, Abdul Ghani & Abbas, Qaisar & Shinde, Pragati A. & Abdelkareem, Mohammad Ali, 2023. "Rechargeable batteries: Technological advancement, challenges, current and emerging applications," Energy, Elsevier, vol. 266(C).
    14. Veyron, Mathilde & Voirand, Antoine & Mion, Nicolas & Maragna, Charles & Mugnier, Daniel & Clausse, Marc, 2022. "Dynamic exergy and economic assessment of the implementation of seasonal underground thermal energy storage in existing solar district heating," Energy, Elsevier, vol. 261(PA).
    15. Xi, Yufei & Zhang, Zhengfa & Zhang, Jiansheng, 2024. "Multi-objective optimization strategy for regional multi-energy systems integrated with medium-high temperature solar thermal technology," Energy, Elsevier, vol. 300(C).
    16. Mudassir, Muhammad Ahmad & Kousar, Shazia & Ehsan, Muhammad & Usama, Muhammad & Sattar, Umer & Aleem, Muhammad & Naheed, Irum & Saeed, Osama Bin & Ahmad, Mehmood & Akbar, Hafiz Favad & Ud Din, Muhamma, 2023. "Emulsion-derived porous carbon-based materials for energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    17. Ionescu, Romeo-Victor & Zlati, Monica Laura & Antohi, Valentin-Marian & Susanu, Irina Olimpia & Cristache, Nicoleta, 2022. "A new approach on renewable energy as a support for regional economic development among the European Union," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    18. Li, Haowen & Yang, Huachao & Yan, Jianhua & Cen, Kefa & Ostrikov, Kostya (Ken) & Bo, Zheng, 2022. "Energy and entropy generation analysis in a supercapacitor for different operating conditions," Energy, Elsevier, vol. 260(C).
    19. Jin Chen & Yue Chen & Wei Zhou, 2024. "Relation exploration between clean and fossil energy markets when experiencing climate change uncertainties: substitutes or complements?," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    20. Liu, Xinyu & Yang, Jianping & Yang, Chunhe & Zhang, Zheyuan & Chen, Weizhong, 2023. "Numerical simulation on cavern support of compressed air energy storage(CAES)considering thermo-mechanical coupling effect," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.