IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics036054422203403x.html
   My bibliography  Save this article

Examination of energy and visual comfort performance of thermo-chromic coatings for cellular offices

Author

Listed:
  • Haratoka, Cagatay
  • Yalcin, Refet A.
  • Erturk, Hakan

Abstract

Thermo-chromic coatings are promising passive systems for providing energy saving performance. They change their optical properties within visible and solar wavelengths according to their temperature, as these coatings contain materials such as vanadium dioxide (V O2) that change phase at their transition temperature. In this study, energy savings performance of thin pigmented thermo-chromic coating attached on an ordinary window glass is investigated by modeling a simple office room for three different transition temperatures in three cities that are all in different climate regions of Turkey; Izmir, Istanbul and Ankara. Optical properties of thin thermo-chromic coatings attached on an ordinary glass are determined by transfer matrix method considering particle concentration and thickness of the coating. Optimal coating for all climatic conditions are determined by optimization for high energy savings performance while considering visual comfort. Comparison between double glazings with thin thermo-chromic coatings and ordinary double glazing is presented for energy improvement and visual comfort by useful daylight illuminance (UDI) approach. Consequently, up to 26% and 9% energy saving potential are observed in relatively hot and cold climates, respectively.

Suggested Citation

  • Haratoka, Cagatay & Yalcin, Refet A. & Erturk, Hakan, 2023. "Examination of energy and visual comfort performance of thermo-chromic coatings for cellular offices," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s036054422203403x
    DOI: 10.1016/j.energy.2022.126517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422203403X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dino, Ipek Gürsel & Meral Akgül, Cagla, 2019. "Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort," Renewable Energy, Elsevier, vol. 141(C), pages 828-846.
    2. Aburas, Marina & Soebarto, Veronica & Williamson, Terence & Liang, Runqi & Ebendorff-Heidepriem, Heike & Wu, Yupeng, 2019. "Thermochromic smart window technologies for building application: A review," Applied Energy, Elsevier, vol. 255(C).
    3. Ochoa, Carlos E. & Aries, Myriam B.C. & van Loenen, Evert J. & Hensen, Jan L.M., 2012. "Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort," Applied Energy, Elsevier, vol. 95(C), pages 238-245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferenc Kalmár & Tünde Kalmár, 2020. "Thermal Comfort Aspects of Solar Gains during the Heating Season," Energies, MDPI, vol. 13(7), pages 1-15, April.
    2. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    3. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    4. Yang, Sungwoong & Cho, Hyun Mi & Yun, Beom Yeol & Hong, Taehoon & Kim, Sumin, 2021. "Energy usage and cost analysis of passive thermal retrofits for low-rise residential buildings in Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    6. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    7. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    8. Michaela Detsi & Aris Manolitsis & Ioannis Atsonios & Ioannis Mandilaras & Maria Founti, 2020. "Energy Savings in an Office Building with High WWR Using Glazing Systems Combining Thermochromic and Electrochromic Layers," Energies, MDPI, vol. 13(11), pages 1-18, June.
    9. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    10. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    11. Daniel Mann & Cindy Yeung & Roberto Habets & Zeger Vroon & Pascal Buskens, 2020. "Comparative Building Energy Simulation Study of Static and Thermochromically Adaptive Energy-Efficient Glazing in Various Climate Regions," Energies, MDPI, vol. 13(11), pages 1-17, June.
    12. Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
    13. Naga Venkata Sai Kumar Manapragada & Anoop Kumar Shukla & Gloria Pignatta & Komali Yenneti & Deepika Shetty & Bibhu Kalyan Nayak & Venkataramana Boorla, 2022. "Development of the Indian Future Weather File Generator Based on Representative Concentration Pathways," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    14. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    15. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    16. Sun, Yanyi & Liang, Runqi & Wu, Yupeng & Wilson, Robin & Rutherford, Peter, 2017. "Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM)," Applied Energy, Elsevier, vol. 205(C), pages 951-963.
    17. Sana Sayadi & Abolfazl Hayati & Mazyar Salmanzadeh, 2021. "Optimization of Window-to-Wall Ratio for Buildings Located in Different Climates: An IDA-Indoor Climate and Energy Simulation Study," Energies, MDPI, vol. 14(7), pages 1-21, April.
    18. Jiayu Li & Bohong Zheng & Komi Bernard Bedra & Zhe Li & Xiao Chen, 2021. "Evaluating the Effect of Window-to-Wall Ratios on Cooling-Energy Demand on a Typical Summer Day," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    19. Lyu, Yuanli & Wang, Ting & Peng, Hao & Zheng, Shukui & Qi, Xuejun & Su, Hua & Chow, Tintai, 2023. "Experimental study on thermal performance of finned tube water flow window," Renewable Energy, Elsevier, vol. 219(P2).
    20. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s036054422203403x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.