IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2842-d366693.html
   My bibliography  Save this article

Comparative Building Energy Simulation Study of Static and Thermochromically Adaptive Energy-Efficient Glazing in Various Climate Regions

Author

Listed:
  • Daniel Mann

    (The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656AE Eindhoven, The Netherlands
    Brightlands Materials Center, Urmonderbaan 22, 6167RD Geleen, The Netherlands)

  • Cindy Yeung

    (The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656AE Eindhoven, The Netherlands
    Brightlands Materials Center, Urmonderbaan 22, 6167RD Geleen, The Netherlands)

  • Roberto Habets

    (The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656AE Eindhoven, The Netherlands
    Brightlands Materials Center, Urmonderbaan 22, 6167RD Geleen, The Netherlands)

  • Zeger Vroon

    (The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656AE Eindhoven, The Netherlands
    Brightlands Materials Center, Urmonderbaan 22, 6167RD Geleen, The Netherlands
    Zuyd University of Applied Sciences, Nieuw Eyckholt 300, 6400AN Heerlen, The Netherlands)

  • Pascal Buskens

    (The Netherlands Organisation for Applied Scientific Research (TNO), High Tech Campus 25, 5656AE Eindhoven, The Netherlands
    Brightlands Materials Center, Urmonderbaan 22, 6167RD Geleen, The Netherlands
    Zuyd University of Applied Sciences, Nieuw Eyckholt 300, 6400AN Heerlen, The Netherlands
    Institute for Materials Research, Inorganic and Physical Chemistry, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium)

Abstract

The building sector contributes approximately one third of the total energy consumption worldwide. A large part of this energy is used for the heating and cooling of buildings, which can be drastically reduced by use of energy-efficient glazing. In this study, we performed building energy simulations on a prototypical residential building, and compared commercially available static (low-e, solar IR blocking) to newly developed adaptive thermochromic glazing systems for various climate regions. The modeling results show that static energy-efficient glazing is mainly optimized for either hot climates, where low solar heat gain can reduce cooling demands drastically, or cold climates, where low-e properties have a huge influence on heating demands. For intermediate climates, we demonstrate that adaptive thermochromic glazing in combination with a low-e coating is perfectly suited. The newly developed thermochromic glazing can lead to annual energy consumption improvement of up to 22% in comparison to clear glass, which exceeds all other glazing systems. Furthermore, we demonstrate that in the Netherlands the use of this new glazing system can lead to annual cost savings of EU 638 per dwelling (172 m 2 , 25% window façade), and to annual nationwide CO 2 savings of 4.5 Mt. Ergo, we show that further development of thermochromic smart windows into market-ready products can have a huge economic, ecological and societal impact on all intermediate climate region in the northern hemisphere.

Suggested Citation

  • Daniel Mann & Cindy Yeung & Roberto Habets & Zeger Vroon & Pascal Buskens, 2020. "Comparative Building Energy Simulation Study of Static and Thermochromically Adaptive Energy-Efficient Glazing in Various Climate Regions," Energies, MDPI, vol. 13(11), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2842-:d:366693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aburas, Marina & Soebarto, Veronica & Williamson, Terence & Liang, Runqi & Ebendorff-Heidepriem, Heike & Wu, Yupeng, 2019. "Thermochromic smart window technologies for building application: A review," Applied Energy, Elsevier, vol. 255(C).
    2. Giovannini, Luigi & Favoino, Fabio & Pellegrino, Anna & Lo Verso, Valerio Roberto Maria & Serra, Valentina & Zinzi, Michele, 2019. "Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Mann & Lavinia Calvi & Cindy P. K. Yeung & Roberto Habets & Ken Elen & An Hardy & Marlies K. Van Bael & Pascal Buskens, 2023. "Approaching the Theoretical Maximum Performance of Highly Transparent Thermochromic Windows," Energies, MDPI, vol. 16(13), pages 1-14, June.
    2. Ireneusz Miciuła & Henryk Wojtaszek & Bogdan Włodarczyk & Marek Szturo & Miłosz Gac & Jerzy Będźmirowski & Katarzyna Kazojć & Judyta Kabus, 2021. "The Current Picture of the Transition to a Green Economy in the EU—Trends in Climate and Energy Policy versus State Security," Energies, MDPI, vol. 14(23), pages 1-25, December.
    3. Ireneusz Miciuła & Henryk Wojtaszek & Marek Bazan & Tomasz Janiczek & Bogdan Włodarczyk & Judyta Kabus & Radomir Kana, 2020. "Management of the Energy Mix and Emissivity of Individual Economies in the European Union as a Challenge of the Modern World Climate," Energies, MDPI, vol. 13(19), pages 1-24, October.
    4. Tadas Zdankus & Rolandas Jonynas & Juozas Vaiciunas & Sandeep Bandarwadkar & Tautvydas Lenkas, 2022. "Investigation of Thermal Energy Accumulation Using Soil Layer for Buildings’ Energy Efficiency," Sustainability, MDPI, vol. 14(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Yi & Xue, Peng & Luo, Tao & Zhang, Yanyun & Tso, Chi Yan & Zhang, Nan & Sun, Yuying & Xie, Jingchao & Liu, Jiaping, 2022. "Regional applicability of thermochromic windows based on dynamic radiation spectrum," Renewable Energy, Elsevier, vol. 196(C), pages 15-27.
    2. Sultan Kobeyev & Serik Tokbolat & Serdar Durdyev, 2021. "Design and Energy Performance Analysis of a Hotel Building in a Hot and Dry Climate: A Case Study," Energies, MDPI, vol. 14(17), pages 1-18, September.
    3. Liu, Xiao & Wu, Yupeng, 2021. "Experimental characterisation of a smart glazing with tuneable transparency, light scattering ability and electricity generation function," Applied Energy, Elsevier, vol. 303(C).
    4. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    5. Tao, Yao & Yan, Yihuan & Tu, Jiyuan & Shi, Long, 2024. "Impact of wind on solar-induced natural ventilation through double-skin facade," Applied Energy, Elsevier, vol. 364(C).
    6. Yang, Sungwoong & Cho, Hyun Mi & Yun, Beom Yeol & Hong, Taehoon & Kim, Sumin, 2021. "Energy usage and cost analysis of passive thermal retrofits for low-rise residential buildings in Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    8. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    9. Jiayu Li & Bohong Zheng & Komi Bernard Bedra & Zhe Li & Xiao Chen, 2021. "Evaluating the Effect of Window-to-Wall Ratios on Cooling-Energy Demand on a Typical Summer Day," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    10. Lyu, Yuanli & Wang, Ting & Peng, Hao & Zheng, Shukui & Qi, Xuejun & Su, Hua & Chow, Tintai, 2023. "Experimental study on thermal performance of finned tube water flow window," Renewable Energy, Elsevier, vol. 219(P2).
    11. Zhang, Ya & Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2020. "Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management," Applied Energy, Elsevier, vol. 264(C).
    12. Jiang, Tengyao & Zhao, Xinpeng & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2021. "Dynamically adaptive window design with thermo-responsive hydrogel for energy efficiency," Applied Energy, Elsevier, vol. 287(C).
    13. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Kinga Stecuła & Radosław Wolniak & Wieslaw Wes Grebski, 2023. "AI-Driven Urban Energy Solutions—From Individuals to Society: A Review," Energies, MDPI, vol. 16(24), pages 1-34, December.
    15. Henriqueta Teixeira & A. Moret Rodrigues & Daniel Aelenei & M. Glória Gomes, 2024. "Simulation-Based Evaluation of the Impact of an Electrochromic Glazing on the Energy Use and Indoor Comfort of an Office Room," Energies, MDPI, vol. 17(9), pages 1-29, April.
    16. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    17. Sun, Yanyi & Liu, Xin & Ming, Yang & Liu, Xiao & Mahon, Daniel & Wilson, Robin & Liu, Hao & Eames, Philip & Wu, Yupeng, 2021. "Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material," Applied Energy, Elsevier, vol. 293(C).
    18. Chen, Sihui & Lyu, Yuanli & Li, Chunying & Li, Xueyang & Yang, Wei & Wang, Ting, 2024. "Liquid flow glazing contributes to energy-efficient buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    19. Sai Liu & Yang Li & Ying Wang & Yuwei Du & Kin Man Yu & Hin-Lap Yip & Alex K. Y. Jen & Baoling Huang & Chi Yan Tso, 2024. "Mask-inspired moisture-transmitting and durable thermochromic perovskite smart windows," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Li, Chunying & Tang, Haida, 2024. "Phase change material window for dynamic energy flow regulation: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2842-:d:366693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.