IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016628.html
   My bibliography  Save this article

Biogas production from piloted wood-based bioethanol process using high-rate anaerobic treatment – Focusing for inhibition and improving biodegradability

Author

Listed:
  • Rintala, Kati
  • Kinnunen, Viljami
  • Berg, Andreas
  • Rintala, Jukka
  • Kokko, Marika

Abstract

To promote the bioeconomy, biorefineries with novel processes are developed. Biogas technology is commonly applied in biorefineries, and in this study, its feasibility for biogas production from wastewaters generated in a novel piloted wood-based bioethanol process was examined in expanded granular sludge bed reactors (EGSB). The novel wastewater was found to have high organic matter content and contained potentially inhibitory compounds. Wastewater was diluted with reactor effluent or tap water (control), and the proportion of wastewater in the feed was increased gradually to increase the organic loading rate. The wastewater was acidic (pH 4.2–4.6) and contained high concentrations of soluble chemical oxygen demand (sCOD 21–51 g/L) and sulfate (1–2.5 g/L). EGSB reactors had high sCODww (sCOD in the wastewater) removal of 74–77 % with OLRs up to 22 kg-sCODww/m3d and no inhibition either by the sulfide resulting from the high influent sulfate concentration or by the re-use of reactor effluent was seen. Integration of anodic oxidation (AO) to the EGSB reactor was studied in batch experiments increasing the biodegradability and total sCOD removal to 80–83 % and enhancing the methane production by 3 %. The results provide valuable information to support the implementation of anaerobic treatment plants as part of new industrial scale bioproduct production processes and encourages further studies on AO.

Suggested Citation

  • Rintala, Kati & Kinnunen, Viljami & Berg, Andreas & Rintala, Jukka & Kokko, Marika, 2024. "Biogas production from piloted wood-based bioethanol process using high-rate anaerobic treatment – Focusing for inhibition and improving biodegradability," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016628
    DOI: 10.1016/j.renene.2024.121594
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbasi, Tasneem & Abbasi, S.A., 2012. "Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1696-1708.
    2. De Coster, Jonas & Liu, Jia & Van den Broeck, Rob & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2020. "Influence of electrochemical advanced oxidation on the long-term operation of an Upflow Anaerobic Sludge Blanket (UASB) reactor treating 4-chlorophenol containing wastewater," Renewable Energy, Elsevier, vol. 159(C), pages 683-692.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    2. Guimarães de Oliveira, Maurício & Marques Mourão, José Marcos & Marques de Oliveira, Ana Katherinne & Bezerra dos Santos, André & Lopes Pereira, Erlon, 2021. "Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation," Renewable Energy, Elsevier, vol. 180(C), pages 691-699.
    3. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    4. Azad Pashaki, Saeed Ghanbari & Khojastehpour, Mehdi & Ebrahimi-Nik, Mohammadali & Rohani, Abbas, 2021. "Treatment of municipal landfill leachate: Optimization of organic loading rate in a two-stage CSTR followed by aerobic degradation," Renewable Energy, Elsevier, vol. 163(C), pages 1210-1221.
    5. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Mensah, Johnson Herlich Roslee & Silva, Alex Takeo Yasumura Lima & Santos, Ivan Felipe Silva dos & Ribeiro, Natalia de Souza & Gbedjinou, Michael Jourdain & Nago, Victorien Gerardo & Tiago Filho, Gera, 2021. "Assessment of electricity generation from biogas in Benin from energy and economic viability perspectives," Renewable Energy, Elsevier, vol. 163(C), pages 613-624.
    7. Tauseef, S.M. & Abbasi, Tasneem & Abbasi, S.A., 2013. "Energy recovery from wastewaters with high-rate anaerobic digesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 704-741.
    8. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    9. Akhbari, Azam & Ibrahim, Shaliza & Ahmad, Muhammad Shakeel, 2023. "Optimization of up-flow velocity and feed flow rate in up-flow anaerobic sludge blanket fixed-film reactor on bio-hydrogen production from palm oil mill effluent," Energy, Elsevier, vol. 266(C).
    10. Zhao, Jiamin & Hou, Tingting & Wang, Qian & Zhang, Zhenya & Lei, Zhongfang & Shimizu, Kazuya & Guo, Wenshan & Ngo, Huu Hao, 2021. "Application of biogas recirculation in anaerobic granular sludge system for multifunctional sewage sludge management with high efficacy energy recovery," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.