IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipas0360544222025415.html
   My bibliography  Save this article

Matching and performance analysis of a solid oxide fuel cell turbine-less hybrid electric propulsion system on aircraft

Author

Listed:
  • Guo, Fafu
  • Li, Chengjie
  • Liu, He
  • Cheng, Kunlin
  • Qin, Jiang

Abstract

Advanced low-carbon propulsion technology is one of the major initiatives to address aviation environmental challenges. In this paper, a solid oxide fuel cell turbine-less hybrid electric propulsion system is developed. It is a new engine, in which the power consumed by the compressor comes from a fuel cell, not a turbine. The aircraft's propulsion comes from the high-velocity exhaust discharged from the nozzles. To make the key fuel cell work properly and determine the system operating parameters, it is necessary to study the matching and performance of the hybrid electric propulsion system. In this study, a performance analysis model of the hybrid electric propulsion system is established. In particular, a one-dimensional fuel cell is simulated to obtain its localized thermal gradient. The results show that the hybrid electric propulsion system has a satisfactory performance under the design conditions. It is superior to the gas turbine-based engine in performance, and they have different performance trends. The operating range of compressor pressure ratio is determined. The sensitivity analysis shows that in addition to compressor pressure ratio, Mach number, reforming temperature, and fuel utilization have a great influence on the performance, which is worthy of further study.

Suggested Citation

  • Guo, Fafu & Li, Chengjie & Liu, He & Cheng, Kunlin & Qin, Jiang, 2023. "Matching and performance analysis of a solid oxide fuel cell turbine-less hybrid electric propulsion system on aircraft," Energy, Elsevier, vol. 263(PA).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025415
    DOI: 10.1016/j.energy.2022.125655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222025415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ribeirinha, P. & Abdollahzadeh, M. & Boaventura, M. & Mendes, A., 2017. "H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 409-419.
    2. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Zhou, Chaoying & Dong, Peng, 2020. "Determination of the safe operation zone for a turbine-less and solid oxide fuel cell hybrid electric jet engine on unmanned aerial vehicles," Energy, Elsevier, vol. 202(C).
    3. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    4. Chen, Hao & Yang, Chen & Zhou, Nana & Farida Harun, Nor & Oryshchyn, Danylo & Tucker, David, 2020. "High efficiencies with low fuel utilization and thermally integrated fuel reforming in a hybrid solid oxide fuel cell gas turbine system," Applied Energy, Elsevier, vol. 272(C).
    5. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Dong, Peng, 2019. "Thermodynamics analysis of a turbojet engine integrated with a fuel cell and steam injection for high-speed flight," Energy, Elsevier, vol. 185(C), pages 190-201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jinwei & Hu, Zhenchao & Lu, Jinzhi & Zhang, Huisheng & Weng, Shilie, 2022. "A novel control strategy with an anode variable geometry ejector for a SOFC-GT hybrid system," Energy, Elsevier, vol. 261(PA).
    2. Ji, Zhixing & Rokni, Marvin Mikael & Qin, Jiang & Zhang, Silong & Dong, Peng, 2021. "Performance and size optimization of the turbine-less engine integrated solid oxide fuel cells on unmanned aerial vehicles with long endurance," Applied Energy, Elsevier, vol. 299(C).
    3. Chehrmonavari, Hamed & Kakaee, Amirhasan & Hosseini, Seyed Ehsan & Desideri, Umberto & Tsatsaronis, George & Floerchinger, Gus & Braun, Robert & Paykani, Amin, 2023. "Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Dehghan, Ali Reza & Fanaei, Mohammad Ali & Panahi, Mehdi, 2022. "Economic plantwide control of a hybrid solid oxide fuel cell - gas turbine system," Applied Energy, Elsevier, vol. 328(C).
    5. Xiao Li & Lingzhi Yang & Yong Hao, 2023. "Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture," Energies, MDPI, vol. 16(20), pages 1-16, October.
    6. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    7. Akdeniz, Halil Yalcin, 2022. "Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints," Energy, Elsevier, vol. 243(C).
    8. Ekici, Selcuk & Ayar, Murat & Kilic, Ugur & Karakoc, T. Hikmet, 2023. "Performance based analysis for the Ankara-London route in terms of emissions and fuel consumption of different combinations of aircraft/engine: An IMPACT application," Journal of Air Transport Management, Elsevier, vol. 108(C).
    9. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Zhaoyi Chen & Fengli Liang & Junkui Mao & Zaixing Wang & Xinyong Jiang, 2024. "Optimization Design of SOFC-GT Hybrid Power System for Aviation Application," Energies, MDPI, vol. 17(15), pages 1-19, July.
    11. Yang, Bo & Guo, Zhengxun & Yang, Yi & Chen, Yijun & Zhang, Rui & Su, Keyi & Shu, Hongchun & Yu, Tao & Zhang, Xiaoshun, 2021. "Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells," Applied Energy, Elsevier, vol. 303(C).
    12. Promsen, Mungmuang & Komatsu, Yosuke & Sciazko, Anna & Kaneko, Shozo & Shikazono, Naoki, 2023. "Power maximization and load range extension of solid oxide fuel cell operation by water cooling," Energy, Elsevier, vol. 276(C).
    13. Dongjin Yu & Byoungjae Kim & Hyunjin Ji & Sangseok Yu, 2022. "Sensitivity Analysis of High-Pressure Methanol—Steam Reformer Using the Condensation Enthalpy of Water Vapor," Energies, MDPI, vol. 15(10), pages 1-18, May.
    14. Huang, Yu & Turan, Ali, 2022. "Flexible power generation based on solid oxide fuel cell and twin-shaft free turbine engine: Mechanical equilibrium running and design analysis," Applied Energy, Elsevier, vol. 315(C).
    15. Ribeirinha, P. & Abdollahzadeh, M. & Pereira, A. & Relvas, F. & Boaventura, M. & Mendes, A., 2018. "High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling," Applied Energy, Elsevier, vol. 215(C), pages 659-669.
    16. Kuo, Jenn-Kun & Hsieh, Chun-Yao, 2021. "Numerical investigation into effects of ejector geometry and operating conditions on hydrogen recirculation ratio in 80 kW PEM fuel cell system," Energy, Elsevier, vol. 233(C).
    17. Yin, Linfei & Liu, Dongduan, 2023. "Adaptive multistep model predictive control for tubular grid-connected solid oxide fuel cells," Renewable Energy, Elsevier, vol. 216(C).
    18. Li, Haolong & Zhang, Tuo & Wei, Wei & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2023. "Performance enhancement of multi-gas compatible dual-channel interconnector for planar solid oxide fuel cells," Energy, Elsevier, vol. 283(C).
    19. Ipsakis, Dimitris & Ouzounidou, Martha & Papadopoulou, Simira & Seferlis, Panos & Voutetakis, Spyros, 2017. "Dynamic modeling and control analysis of a methanol autothermal reforming and PEM fuel cell power system," Applied Energy, Elsevier, vol. 208(C), pages 703-718.
    20. Wang, Jiqiang & Wang, Ya & Zhang, Shaohui & Fan, Chun & Zhou, Nanqing & Liu, Jinhui & Li, Xin & Liu, Yun & Hou, Xiujun & Yi, Bowen, 2024. "Accounting of aviation carbon emission in developing countries based on flight-level ADS-B data," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.