IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipas036054422202093x.html
   My bibliography  Save this article

Investigation of the effects of water injection into an SI engine running on M15 methanol fuel on engine performance and exhaust emissions

Author

Listed:
  • Cesur, Idris

Abstract

The use of alternative fuels is an effective method to reduce pollutant emissions from spark-ignition engines. However, the usage of alternative fuels alone will not be adequate comply with strict emission standards. Water injection is one of the measures taken during combustion to achieve the desired emission values. However, deterioration in engine performance, which is not desired, occurs with the measures taken. In this study, a gasoline-methanol blend (85% gasoline + 15% methanol) was used as a fuel in a spark-ignition engine. Water was injected into the intake manifold at different rates to reduce emissions further and improve engine performance in an engine running on M15 fuel. Water was injected into the intake air with an electronic control system with 10, 20, and 30% mass ratios of the engine fuel consumption. As a result of the experimental studies conducted under full load conditions, it was determined that the effective power decreased by 2.5%, and the specific fuel consumption increased by 3.5% compared to the standard condition in the engine fueled with M15. It was revealed that there was a 6% decrease in HC emission at 2200 rpm and a 4% decrease in NOx emissions at 2600 rpm. In comparison to standard engine data, when water injection was applied to the engine, there was a decrease up to 16% in HC emissions and up to 12% in NOx emissions. In comparison to the standard data, an increase of 2.5% in the effective power was observed with 20% water injection in the effective power.

Suggested Citation

  • Cesur, Idris, 2022. "Investigation of the effects of water injection into an SI engine running on M15 methanol fuel on engine performance and exhaust emissions," Energy, Elsevier, vol. 261(PA).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s036054422202093x
    DOI: 10.1016/j.energy.2022.125203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422202093X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nuthan Prasad, B.S. & Pandey, Jayashish Kumar & Kumar, G.N., 2020. "Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline," Energy, Elsevier, vol. 191(C).
    2. Gonca, Guven & Sahin, Bahri & Parlak, Adnan & Ayhan, Vezir & Cesur, Idris & Koksal, Sakip, 2017. "Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE)," Energy, Elsevier, vol. 119(C), pages 926-937.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zuowen & Zhang, Zhongjie & Rao, Shunlu & Zheng, Zhaolei, 2024. "Study of water injection on suppressing knock in a high compression ratio and supercharged hybrid gasoline engine," Energy, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oleg Bazaluk & Valerii Havrysh & Vitalii Nitsenko & Tomas Baležentis & Dalia Streimikiene & Elena A. Tarkhanova, 2020. "Assessment of Green Methanol Production Potential and Related Economic and Environmental Benefits: The Case of China," Energies, MDPI, vol. 13(12), pages 1-25, June.
    2. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    3. Muhammad Usman & Muhammad Ali Ijaz Malik & Tariq Nawaz Chaudhary & Fahid Riaz & Sohaib Raza & Muhammad Abubakar & Farrukh Ahmad Malik & Hafiz Muhammad Ahmad & Yasser Fouad & Muhammad Mujtaba Abbas & M, 2023. "Comparative Assessment of Ethanol and Methanol–Ethanol Blends with Gasoline in SI Engine for Sustainable Development," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    4. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing," Energy, Elsevier, vol. 246(C).
    5. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
    6. Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
    7. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Wang, Yongjian & Long, Wuqiang & Dong, Pengbo & Tian, Hua & Wang, Yang & Xie, Chunyang & Tang, Yuanyou & Lu, Mingfei & Zhang, Weiqi, 2024. "Experimental investigation of knock control criterion considering power output loss for a PFI SI methanol marine engine," Energy, Elsevier, vol. 303(C).
    9. Zhang, Zhongbo & Wan, Weijian & Zhang, Wencan & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research of the impacts of in-cylinder steam injection and ignition timing on the performance and NO emission of a LPG engine," Energy, Elsevier, vol. 244(PB).
    10. Yin, Zibin & Cai, Wenwei & Zhang, Zhuo & Deng, Zijin & Li, Zhiyong, 2022. "Effects of hydrogen-rich products from methanol steam reforming on the performance enhancement of a medium-speed marine engine," Energy, Elsevier, vol. 256(C).
    11. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
    12. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine," Energy, Elsevier, vol. 239(PE).
    13. Xu, Guangfu & Jia, Ming & Li, Yaopeng & Xie, Maozhao & Su, Wanhua, 2017. "Multi-objective optimization of the combustion of a heavy-duty diesel engine with low temperature combustion (LTC) under a wide load range: (II) Detailed parametric, energy, and exergy analysis," Energy, Elsevier, vol. 139(C), pages 247-261.
    14. Zhongbo Zhang & Lifu Li, 2018. "Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NO x Emission Control," Energies, MDPI, vol. 11(4), pages 1-22, April.
    15. Zhang, Zhongbo & Liu, Qin & Zhao, Rongchao & Chen, Youpeng & Qin, Qichao, 2022. "Research on in-cylinder steam injection in a turbocompound diesel engine for fuel savings," Energy, Elsevier, vol. 238(PA).
    16. Liu, Qi & Xie, Mingke & Fu, Jianqin & Liu, Jingping & Deng, Banglin, 2021. "Cylinder steam injection (CSI) for internal combustion (IC) engine waste heat recovery (WHR) and its application on natural gas (NG) engine," Energy, Elsevier, vol. 214(C).
    17. Dinesh, M.H. & Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of parallel LPG fuelling in a methanol fuelled SI engine under variable compression ratio," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pa:s036054422202093x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.