IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipas0360544222020424.html
   My bibliography  Save this article

Life cycle assessment of pollutants and emission reduction strategies based on the energy structure of the nonferrous metal industry in China

Author

Listed:
  • Zhang, Yuwei
  • Zhang, Yingjie
  • Zhu, Hengxi
  • Zhou, Pengxiang
  • Liu, Shuai
  • Lei, Xiaoli
  • Li, Yanhong
  • Li, Bin
  • Ning, Ping

Abstract

China is the largest producer and consumer of nonferrous metals in the world. China's consumption has posed a severe challenge to " peak carbon emissions and carbon neutrality " and “ecological civilization construction” goals of the 14th Five-Year Plan. Therefore, this article selects the five most typical nonferrous metal industries and analyses the energy structure through life cycle inventory (“LCI”). Then, this article uses the life cycle assessment (“LCA”) to characterize, standardize, and weigh the environmental effects of the nonferrous metal industry. The contribution of the characteristic value is mainly from high-energy-consuming processes such as electrolysis and smelting. High-energy-consuming proportions are approximately 80% and 10%, respectively. Of the results of the standardized and weighted models, the most important environmental impact is “global warming”. Based on the LCA results, we propose energy-saving and emission reduction methods. The LCA model would support decisions aimed at achieving the “peak carbon emissions and carbon neutrality” and “reducing pollution and carbon and coordinating governance strategic plan”. If these countermeasures are effectively implemented, the emission reduction effect of environmental pollution will reach 87.94%–99.12%. According to the economic evaluation, implementing an emission reduction measure could create an economic value of RMB 1.35 × 1013 per year.

Suggested Citation

  • Zhang, Yuwei & Zhang, Yingjie & Zhu, Hengxi & Zhou, Pengxiang & Liu, Shuai & Lei, Xiaoli & Li, Yanhong & Li, Bin & Ning, Ping, 2022. "Life cycle assessment of pollutants and emission reduction strategies based on the energy structure of the nonferrous metal industry in China," Energy, Elsevier, vol. 261(PA).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222020424
    DOI: 10.1016/j.energy.2022.125148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222020424
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xianhua & Deng, Huai & Li, Hua & Guo, Yiming, 2021. "Impact of Energy Structure Adjustment and Environmental Regulation on Air Pollution in China: Simulation and Measurement Research by the Dynamic General Equilibrium Model," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    2. Li, Liquan & Pan, De’an & Li, Bin & Wu, Yufeng & Wang, Huaidong & Gu, Yifan & Zuo, Tieyong, 2017. "Patterns and challenges in the copper industry in China," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 1-7.
    3. Al-Hamed, Khaled H.M. & Dincer, Ibrahim, 2022. "Exergoeconomic analysis and optimization of a solar energy-based integrated system with oxy-combustion for combined power cycle and carbon capturing," Energy, Elsevier, vol. 250(C).
    4. Miao Zhong & Kevin Tran & Yimeng Min & Chuanhao Wang & Ziyun Wang & Cao-Thang Dinh & Phil De Luna & Zongqian Yu & Armin Sedighian Rasouli & Peter Brodersen & Song Sun & Oleksandr Voznyy & Chih-Shan Ta, 2020. "Accelerated discovery of CO2 electrocatalysts using active machine learning," Nature, Nature, vol. 581(7807), pages 178-183, May.
    5. Wang, Ning & Ren, Yixin & Zhu, Tao & Meng, Fanxin & Wen, Zongguo & Liu, Gengyuan, 2018. "Life cycle carbon emission modelling of coal-fired power: Chinese case," Energy, Elsevier, vol. 162(C), pages 841-852.
    6. Ghorbani, Bahram & Salehi, Gholamreza & Ebrahimi, Armin & Taghavi, Masoud, 2021. "Energy, exergy and pinch analyses of a novel energy storage structure using post-combustion CO2 separation unit, dual pressure Linde-Hampson liquefaction system, two-stage organic Rankine cycle and ge," Energy, Elsevier, vol. 233(C).
    7. Hui Li & Peng Wen & Dominique S. Itanze & Zachary D. Hood & Xiao Ma & Michael Kim & Shiba Adhikari & Chang Lu & Chaochao Dun & Miaofang Chi & Yejun Qiu & Scott M. Geyer, 2019. "RETRACTED ARTICLE: Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    8. Milutinović, Biljana & Stefanović, Gordana & Đekić, Petar S. & Mijailović, Ivan & Tomić, Mladen, 2017. "Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis," Energy, Elsevier, vol. 137(C), pages 917-926.
    9. Sun, Shufen & Huang, Chenchen, 2021. "Energy structure evaluation and optimization in BRICS: A dynamic analysis based on a slack based measurement DEA with undesirable outputs," Energy, Elsevier, vol. 216(C).
    10. Eheliyagoda, Disna & Li, Jinhui & Geng, Yong & Zeng, Xianlai, 2022. "The role of China's aluminum recycling on sustainable resource and emission pathways," Resources Policy, Elsevier, vol. 76(C).
    11. Izard, Catherine F. & Müller, Daniel B., 2010. "Tracking the devil's metal: Historical global and contemporary U.S. tin cycles," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1436-1441.
    12. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    13. Xu, Haitao & Pan, Xiongfeng & Guo, Shucen & Lu, Yuduo, 2021. "Forecasting Chinese CO2 emission using a non-linear multi-agent intertemporal optimization model and scenario analysis," Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Junya & Zhao, Qinfang & Ning, Ping & Wen, Shikun, 2024. "Greenhouse gas contribution and emission reduction potential prediction of China's aluminum industry," Energy, Elsevier, vol. 290(C).
    2. Shen, Angxing & Zhang, Jihong, 2024. "Technologies for CO2 emission reduction and low-carbon development in primary aluminum industry in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Wenxiang Peng & Yutao Lei & Xuan Zhang, 2023. "Analysis of China’s High-Carbon Manufacturing Industry’s Carbon Emissions in the Digital Process," Sustainability, MDPI, vol. 15(20), pages 1-35, October.
    4. Francesco Mocera & Aurelio Somà & Salvatore Martelli & Valerio Martini, 2023. "Trends and Future Perspective of Electrification in Agricultural Tractor-Implement Applications," Energies, MDPI, vol. 16(18), pages 1-36, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    2. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    3. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    4. Guo, Tianjiao & Geng, Yong & Song, Xiaoqian & Rui, Xue & Ge, Zewen, 2023. "Tracing magnesium flows in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 83(C).
    5. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    6. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    7. Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Luo, Xiaoyu & Chen, Ying & Wu, Shuying & Chen, Wei, 2024. "N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature," Energy, Elsevier, vol. 286(C).
    8. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    9. Khoshroo, Alireza & Izadikhah, Mohammad & Emrouznejad, Ali, 2022. "Total factor energy productivity considering undesirable pollutant outputs: A new double frontier based malmquist productivity index," Energy, Elsevier, vol. 258(C).
    10. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Xinwen Lin & Angathevar Baskaran & Yajie Zhang, 2023. "Watershed Horizontal Ecological Compensation Policy and Green Ecological City Development: Spatial and Mechanism Assessment," IJERPH, MDPI, vol. 20(3), pages 1-21, February.
    12. Zuo, Wei & Li, Dexin & Li, Qingqing & Cheng, Qianju & Huang, Yuhan, 2024. "Effects of intermittent pulsating flow on the performance of multi-channel cold plate in electric vehicle lithium-ion battery pack," Energy, Elsevier, vol. 294(C).
    13. Kaiyuan Zheng & Ying Zhang, 2023. "Prediction and Urban Adaptivity Evaluation Model Based on Carbon Emissions: A Case Study of Six Coastal City Clusters in China," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    14. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    15. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    16. Bahram Ghorbani, 2021. "Development of an Integrated Structure for the Tri-Generation of Power, Liquid Carbon Dioxide, and Medium Pressure Steam Using a Molten Carbonate Fuel Cell, a Dual Pressure Linde-Hampson Liquefaction ," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    17. Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," AQR Working Papers 201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
    18. Jikai Sun & Rui Tu & Yuchun Xu & Hongyan Yang & Tie Yu & Dong Zhai & Xiuqin Ci & Weiqiao Deng, 2024. "Machine learning aided design of single-atom alloy catalysts for methane cracking," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    20. Han, Rong & Li, Jianglong & Guo, Zhi, 2022. "Optimal quota in China's energy capping policy in 2030 with renewable targets and sectoral heterogeneity," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222020424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.