IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs0360544222011434.html
   My bibliography  Save this article

Heat transfer deterioration in vertical sCO2 cooling in 3 mm tube

Author

Listed:
  • Wahl, Andreas
  • Mertz, Rainer
  • Laurien, Eckart
  • Starflinger, Jörg

Abstract

In this publication, the cooling heat transfer coefficient (htc) is investigated in a 3 mm diameter tube with vertical flow orientation. Commonly used calculation methods of the heat transfer coefficient are presented. Although developed for heating of sCO2, the mixed convection criterion is used to evaluate the heat transfer deterioration. The effects of the CO2 mass flux of 141−354kg/m²s and bulk fluid temperatures of 20−50°C with a constant pressure of 80bar on the heat transfer were examined. The upwards flow shows a steady decrease in the htc with the reduction of the mass flux. However, the downwards flow shows significant effects of buoyancy. At low mass flux the distinct peak in the htc at the pseudocritical temperature (Tpc) disappears. The deteriorated heat transfer in the downwards flow showed significant lower wall temperatures compared to the upwards flow. The separate evaluation of the liquid-like and gas-like region indicates that the deterioration may vary based on the fluid properties. The results were regressed within +-15% in the forced convection region and +-40% in the mixed convection region. The comparison with the literature data of vertical cooling in 6 mm showed different behaviour which indicates an influence of the tube diameter.

Suggested Citation

  • Wahl, Andreas & Mertz, Rainer & Laurien, Eckart & Starflinger, Jörg, 2022. "Heat transfer deterioration in vertical sCO2 cooling in 3 mm tube," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222011434
    DOI: 10.1016/j.energy.2022.124240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benoit, H. & Spreafico, L. & Gauthier, D. & Flamant, G., 2016. "Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 298-315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Draskic, Marko & Bugeat, Benjamin & Pecnik, Rene, 2024. "The steady behavior of the supercritical carbon dioxide natural circulation loop," Energy, Elsevier, vol. 294(C).
    2. Liu, Penghua & Wang, Renting & Liu, Shaobei & Bao, Zewei, 2023. "Experimental study on the thermal-hydraulic performance of a tube-in-tube helical coil air–fuel heat exchanger for an aero-engine," Energy, Elsevier, vol. 267(C).
    3. Yang, Jiaqi & Ma, Yuan & Wang, Wujun, 2023. "An analytical method for quickly evaluating the performances of refractory alloys in sCO2 Brayton cycle applications," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabeel Abed & Imran Afgan & Andrea Cioncolini & Hector Iacovides & Adel Nasser, 2020. "Assessment and Evaluation of the Thermal Performance of Various Working Fluids in Parabolic Trough Collectors of Solar Thermal Power Plants under Non-Uniform Heat Flux Distribution Conditions," Energies, MDPI, vol. 13(15), pages 1-29, July.
    2. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    3. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    4. Manzolini, Giampaolo & Lucca, Gaia & Binotti, Marco & Lozza, Giovanni, 2021. "A two-step procedure for the selection of innovative high temperature heat transfer fluids in solar tower power plants," Renewable Energy, Elsevier, vol. 177(C), pages 807-822.
    5. Peiró, Gerard & Prieto, Cristina & Gasia, Jaume & Jové, Aleix & Miró, Laia & Cabeza, Luisa F., 2018. "Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation," Renewable Energy, Elsevier, vol. 121(C), pages 236-248.
    6. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    7. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
    9. Zaharil, Hafiz Aman, 2021. "An investigation on the usage of different supercritical fluids in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 168(C), pages 676-691.
    10. Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
    11. Pawan Kumar Kuldeep & Sandeep Kumar & Mohammed Saquib Khan & Hitesh Panchal & Ashmore Mawire & Sunita Mahavar, 2022. "Investigation of Heat Transfer Fluids Using a Solar Concentrator for Medium Temperature Storage Receiver Systems and Applications," Energies, MDPI, vol. 15(21), pages 1-16, October.
    12. Wang, Ding & Chen, Yuxuan & Xiao, Hu & Zhang, Yanping, 2022. "Effects of geometric and operating parameters on thermal performance of conical cavity receivers using supercritical CO2 as heat transfer fluid," Renewable Energy, Elsevier, vol. 185(C), pages 804-819.
    13. San Miguel, G. & Corona, B., 2018. "Economic viability of concentrated solar power under different regulatory frameworks in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 205-218.
    14. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland, 2018. "Experimental performance of a two-stage (50X) parabolic trough collector tested to 650 °C using a suspended particulate (alumina) HTF," Applied Energy, Elsevier, vol. 222(C), pages 228-243.
    15. Xiaoru Zhuang & Haitao Wang & Haoran Lu & Zhi Yang & Hao Guo, 2023. "Numerical Investigation of Heat Transfer and Flow Characteristics of Supercritical CO 2 in Solar Tower Microchannel Receivers at High Temperature," Energies, MDPI, vol. 16(18), pages 1-19, September.
    16. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    17. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    18. Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2022. "Exergy-based weighted optimization and smart decision-making for renewable energy systems considering economics, reliability, risk, and environmental assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2017. "Influence of the heat transfer fluid in a CSP plant molten salts charging process," Renewable Energy, Elsevier, vol. 113(C), pages 148-158.
    20. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland & Cygan, David & Abbasi, Hamid, 2019. "Experimental performance of a two-stage (50×) parabolic trough collector tested to 650 °C using a suspended particulate heat transfer fluid," Applied Energy, Elsevier, vol. 240(C), pages 436-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222011434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.