IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v250y2022ics0360544222007198.html
   My bibliography  Save this article

A decision-making method to choose optimal systems considering financial and environmental aspects: Application in hybrid CCHP systems

Author

Listed:
  • Melo, F.M.
  • Magnani, F.S.
  • Carvalho, M.

Abstract

This work presents a decision-making method based on a multiobjective optimization model that integrates renewable and nonrenewable energy equipment and considers environmental and financial combined gains. Parametric studies optimize the system for other energy tariffs, and an investment risk analysis provides additional information about the systems identified by the decision-making method and in the parametric studies. The energy system is located in northeastern Brazil. The bicriteria optimal solution comprises a gas boiler, solar collector, photovoltaic panels, wind turbines, and absorption and compression chillers. This optimal solution had a reasonable commitment to financial and environmental present values. Another energy system was identified in the parametric study, where an engine-generator set and a recovery boiler were included. Both systems presented a significant gain in environmental present value versus a slight decrease in financial present value. In the risk analysis, these systems demonstrated high adaptability, mainly due to the integration of the absorption chiller and engine-generator set and cascading use of energy. This high adaptability led to low investment risks.

Suggested Citation

  • Melo, F.M. & Magnani, F.S. & Carvalho, M., 2022. "A decision-making method to choose optimal systems considering financial and environmental aspects: Application in hybrid CCHP systems," Energy, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007198
    DOI: 10.1016/j.energy.2022.123816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222007198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jiangjiang & Liu, Yi & Ren, Fukang & Lu, Shuaikang, 2020. "Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility," Energy, Elsevier, vol. 197(C).
    2. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    3. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    4. Song, Zhihui & Liu, Tao & Lin, Qizhao, 2020. "Multi-objective optimization of a solar hybrid CCHP system based on different operation modes," Energy, Elsevier, vol. 206(C).
    5. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    6. Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro, 2013. "Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications," Applied Energy, Elsevier, vol. 112(C), pages 205-214.
    7. Bruno Campos Teixeira de Carvalho & Caio Tácito Miranda Castro Bezerra C.T.M.C.B. de Melo & Alberto Romero Freire & Shoaib Khanmohammadi & Monica Carvalho, 2019. "Multicriteria optimization of renewable-based polygeneration system for tertiary sector buildings," ULB Institutional Repository 2013/308977, ULB -- Universite Libre de Bruxelles.
    8. Sayyaadi, Hoseyn & Mehrabipour, Reza, 2012. "Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger," Energy, Elsevier, vol. 38(1), pages 362-375.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taskin, Dilvin & Dogan, Eyup & Madaleno, Mara, 2022. "Analyzing the relationship between energy efficiency and environmental and financial variables: A way towards sustainable development," Energy, Elsevier, vol. 252(C).
    2. Junchao Cheng & Yongyi Huang & Hongjing He & Abdul Matin Ibrahimi & Tomonobu Senjyu, 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons," Energies, MDPI, vol. 16(10), pages 1-21, May.
    3. Justyna Kozłowska & Marco Antônio Benvenga & Irenilza de Alencar Nääs, 2022. "Investment Risk and Energy Security Assessment of European Union Countries Using Multicriteria Analysis," Energies, MDPI, vol. 16(1), pages 1-28, December.
    4. Jie Ji & Fucheng Wang & Mengxiong Zhou & Renwei Guo & Rundong Ji & Hui Huang & Jiayu Zhang & Muhammad Shahzad Nazir & Tian Peng & Chu Zhang & Jiahui Huang & Yaodong Wang, 2022. "Evaluation Study on a Novel Structure CCHP System with a New Comprehensive Index Using Improved ALO Algorithm," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    5. Pourmoghadam, Peyman & Kasaeian, Alibakhsh, 2023. "Economic and energy evaluation of a solar multi-generation system powered by the parabolic trough collectors," Energy, Elsevier, vol. 262(PA).
    6. Dai, Yiru & Zeng, Yipu, 2022. "Optimization of CCHP integrated with multiple load, replenished energy, and hybrid storage in different operation modes," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
    2. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    3. Kang, Ligai & Yuan, Xiaoxue & Sun, Kangjie & Zhang, Xu & Zhao, Jun & Deng, Shuai & Liu, Wei & Wang, Yongzhen, 2022. "Feed-forward active operation optimization for CCHP system considering thermal load forecasting," Energy, Elsevier, vol. 254(PB).
    4. Pina, Eduardo A. & Lozano, Miguel A. & Ramos, José C. & Serra, Luis M., 2020. "Tackling thermal integration in the synthesis of polygeneration systems for buildings," Applied Energy, Elsevier, vol. 269(C).
    5. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    6. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    7. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    8. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    9. Zhou, Shengdong & Bai, Zhang & Li, Qi & Yuan, Yu & Wang, Shuoshuo, 2024. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Optimized recuperation regulation with syngas storage," Applied Energy, Elsevier, vol. 353(PB).
    10. Yuwei, Liu & Li, Lingling & Jiaqi, Liu, 2024. "Hybrid scheduling strategy and improved marine predator optimizer for energy scheduling in integrated energy system to enhance economic and environmental protection capability," Renewable Energy, Elsevier, vol. 228(C).
    11. Chen, Yuzhu & Xu, Jinzhao & Wang, Jun & Lund, Peter D., 2022. "Optimization of a weather-based energy system for high cooling and low heating conditions using different types of water-cooled chiller," Energy, Elsevier, vol. 252(C).
    12. Han, Zepeng & Wang, Jiangjiang & Cui, Zhiheng & Lu, Chunyan & Qi, Xiaoling, 2021. "Multi-objective optimization and exergoeconomic analysis for a novel full-spectrum solar-assisted methanol combined cooling, heating, and power system," Energy, Elsevier, vol. 237(C).
    13. Chen, W.D. & Shao, Y.L. & Bui, D.T. & Huang, Z.F. & Chua, K.J., 2024. "Development of novel optimal operating maps for combined cooling, heating, and power systems," Applied Energy, Elsevier, vol. 358(C).
    14. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Zhou, Yuan & Wang, Jiangjiang & Liu, Yi & Yan, Rujing & Ma, Yanpeng, 2021. "Incorporating deep learning of load predictions to enhance the optimal active energy management of combined cooling, heating and power system," Energy, Elsevier, vol. 233(C).
    17. Dai, Yiru & Zeng, Yipu, 2022. "Optimization of CCHP integrated with multiple load, replenished energy, and hybrid storage in different operation modes," Energy, Elsevier, vol. 260(C).
    18. Yinping Yang & Chao Qin & Yuan Zeng & Chengshan Wang, 2019. "Interval Optimization-Based Unit Commitment for Deep Peak Regulation of Thermal Units," Energies, MDPI, vol. 12(5), pages 1-21, March.
    19. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    20. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:250:y:2022:i:c:s0360544222007198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.