IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222002912.html
   My bibliography  Save this article

Understanding the collapse of flash-boiling sprays formed by multi-hole injectors operating at low injection pressures

Author

Listed:
  • Kapusta, Łukasz Jan

Abstract

Sprays consisting of initially separated plumes, which are generated by multi-hole injectors in strong flash-boiling conditions, may collapse and form a single spray cloud. It has been shown that for high-pressure injection systems (≥5 MPa), such behaviour is dependent on both the superheat and the geometrical configuration of the injector; while the spray collapse in low-pressure systems (≤1 MPa) is not yet understood. To the best of the author's knowledge, this is the first study aimed at filling this information gap. The principal novelty of this work is related to understanding the collapse in low-pressure systems, in terms of the different numbers of nozzles and the difference in the effects from flash boiling between low- and high-pressure sprays.

Suggested Citation

  • Kapusta, Łukasz Jan, 2022. "Understanding the collapse of flash-boiling sprays formed by multi-hole injectors operating at low injection pressures," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222002912
    DOI: 10.1016/j.energy.2022.123388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    2. Ju, Dehao & Huang, Zhong & Jia, Xiaoxu & Qiao, Xinqi & Xiao, Jin & Huang, Zhen, 2016. "Macroscopic characteristics and internal flow pattern of dimethyl ether flash-boiling spray discharged through a vertical twin-orifice injector," Energy, Elsevier, vol. 114(C), pages 1240-1250.
    3. Jiang, Changzhao & Parker, Matthew C. & Butcher, Daniel & Spencer, Adrian & Garner, Colin P. & Helie, Jerome, 2019. "Comparison of flash boiling resistance of two injector designs and the consequences on downsized gasoline engine emissions," Applied Energy, Elsevier, vol. 254(C).
    4. Kaario, Ossi Tapani & Vuorinen, Ville & Zhu, Lei & Larmi, Martti & Liu, Ronghou, 2017. "Mixing and evaporation analysis of a high-pressure SCR system using a hybrid LES-RANS approach," Energy, Elsevier, vol. 120(C), pages 827-841.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Mengzhao & Kim, Huijun & Zhou, Bo & Park, Suhan, 2023. "Spray collapse resistance of GDI injectors with different hole structures under flash boiling conditions," Energy, Elsevier, vol. 268(C).
    2. Meng Ji & Zhijun Wu & Alessandro Ferrari & Lezhong Fu & Oscar Vento, 2023. "Experimental Investigation on Gasoline—Water Mixture Fuel Impingement Preparation Method and Spray Characteristics with High Injection Temperatures and Pressures," Energies, MDPI, vol. 16(16), pages 1-16, August.
    3. Zhou, Yifan & Wei, Zhenhong & Zhu, Qitian & Cao, Yang & Zhang, Yuyin, 2022. "Quantitative characterization on cyclic variation of mixture formation for flash boiling sprays," Energy, Elsevier, vol. 257(C).
    4. Qiu, Shuyi & Yao, Bowei & Wang, Shangning & Zhang, Weixuan & Hung, David L.S. & Xu, Min & Li, Xuesong, 2023. "Droplet characteristics of multi-plume flash boiling spray evaluation using SLIPI-LIEF/Mie planar imaging technique," Energy, Elsevier, vol. 282(C).
    5. Kaźmierski, Bartosz & Kapusta, Łukasz Jan, 2023. "The importance of individual spray properties in performance improvement of a urea-SCR system employing flash-boiling injection," Applied Energy, Elsevier, vol. 329(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Mengzhao & Park, Suhan, 2023. "Predictions and analysis of flash boiling spray characteristics of gasoline direct injection injectors based on optimized machine learning algorithm," Energy, Elsevier, vol. 262(PA).
    2. Zhou, Yifan & Wei, Zhenhong & Zhu, Qitian & Cao, Yang & Zhang, Yuyin, 2022. "Quantitative characterization on cyclic variation of mixture formation for flash boiling sprays," Energy, Elsevier, vol. 257(C).
    3. Chang, Mengzhao & Kim, Huijun & Zhou, Bo & Park, Suhan, 2023. "Spray collapse resistance of GDI injectors with different hole structures under flash boiling conditions," Energy, Elsevier, vol. 268(C).
    4. Giovanni Di Ilio & Vesselin K. Krastev & Giacomo Falcucci, 2019. "Evaluation of a Scale-Resolving Methodology for the Multidimensional Simulation of GDI Sprays," Energies, MDPI, vol. 12(14), pages 1-13, July.
    5. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    6. Kaushal Nishad & Marcus Stein & Florian Ries & Viatcheslav Bykov & Ulrich Maas & Olaf Deutschmann & Johannes Janicka & Amsini Sadiki, 2019. "Thermal Decomposition of a Single AdBlue ® Droplet Including Wall–Film Formation in Turbulent Cross-Flow in an SCR System," Energies, MDPI, vol. 12(13), pages 1-25, July.
    7. Mahmoud Gadalla & Jeevananthan Kannan & Bulut Tekgül & Shervin Karimkashi & Ossi Kaario & Ville Vuorinen, 2020. "Large-Eddy Simulation of ECN Spray A: Sensitivity Study on Modeling Assumptions," Energies, MDPI, vol. 13(13), pages 1-24, July.
    8. Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
    9. Zhang, Qing & Gao, Ya & Chu, Miaoqi & Chen, Pice & Zhang, Qingteng & Wang, Jin, 2023. "Enhanced energy conversion efficiency promoted by cavitation in gasoline direct injection," Energy, Elsevier, vol. 265(C).
    10. Rogóż, Rafał & Kapusta, Łukasz Jan & Bachanek, Jakub & Vankan, Joseph & Teodorczyk, Andrzej, 2020. "Improved urea-water solution spray model for simulations of selective catalytic reduction systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222002912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.