IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001402.html
   My bibliography  Save this article

CNT sheet as a cathodic functional interlayer in polymer electrolyte membrane fuel cells

Author

Listed:
  • Kwon, Obeen
  • Kim, Jaeyeon
  • Choi, Heesoo
  • Cha, Hyeonjin
  • Shin, Myunggyu
  • Jeong, Youngjin
  • Park, Taehyun

Abstract

Carbon nanotube (CNT) sheet was sandwiched between the cathodic GDBL and a bipolar plate of polymer electrolyte membrane fuel cells (PEMFCs). The CNT sheets were synthesized through the direct spinning method and investigated their morphological characteristics. The electrochemical performances of MEA with CNT interlayer were measured via polarizations, iR-free, and electrochemical impedance spectra (EIS) compared to the conventional MEA under elevating backpressure. The performance of the MEA with CNT interlayer at 1.0 barg was enhanced by 91.8% (364 mW cm−2 at 0.7 V), which was higher than the peak power density improvement of 13.0% (850 mW cm−2 at 0.48 V). We also identified that corresponding ohmic and charge-transfer resistances were reduced. Especially, the ohmic resistance was decreased by up to 42.2% with increasing operating pressure compared to the conventional MEA due to better hydration and interfacial contact. Notwithstanding that the performance was ameliorated with increased pressure, we found that the mass transport loss tends to become more sensitive at the high current density region, and thus optimum operating conditions were proposed. We concluded that the CNT sheet as a functional interlayer would be advantageous in improving the performance of commercialized PEMFCs.

Suggested Citation

  • Kwon, Obeen & Kim, Jaeyeon & Choi, Heesoo & Cha, Hyeonjin & Shin, Myunggyu & Jeong, Youngjin & Park, Taehyun, 2022. "CNT sheet as a cathodic functional interlayer in polymer electrolyte membrane fuel cells," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001402
    DOI: 10.1016/j.energy.2022.123237
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afra, Mehran & Nazari, Mohsen & Kayhani, Mohammad Hasan & Sharifpur, M. & Meyer, J.P., 2019. "3D experimental visualization of water flooding in proton exchange membrane fuel cells," Energy, Elsevier, vol. 175(C), pages 967-977.
    2. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    3. Wang, Qiang & Li, Shuyu & Pisarenko, Zhanna, 2020. "Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy -- evidence from the G20 countries," Energy, Elsevier, vol. 209(C).
    4. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    5. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    6. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    7. Afshari, E. & Mosharaf-Dehkordi, M. & Rajabian, H., 2017. "An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor," Energy, Elsevier, vol. 118(C), pages 705-715.
    8. Kim, Jaeyeon & Kim, Hyeok & Song, Hyeonjun & Kim, Dasol & Kim, Geon Hwi & Im, Dasom & Jeong, Youngjin & Park, Taehyun, 2021. "Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 227(C).
    9. Salva, J. Antonio & Iranzo, Alfredo & Rosa, Felipe & Tapia, Elvira, 2016. "Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions," Energy, Elsevier, vol. 101(C), pages 100-112.
    10. Kong, Im Mo & Jung, Aeri & Kim, Min Soo, 2016. "Investigations on the double gas diffusion backing layer for performance improvement of self-humidified proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 176(C), pages 149-156.
    11. Kong, Im Mo & Choi, Jong Won & Kim, Sung Il & Lee, Eun Sook & Kim, Min Soo, 2015. "Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer," Applied Energy, Elsevier, vol. 145(C), pages 345-353.
    12. Kong, Im Mo & Jung, Aeri & Kim, Young Sang & Kim, Min Soo, 2017. "Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 478-487.
    13. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shengchu & Hua, Shiyang & Lin, Rui & Wang, Hong & Cai, Xin & Ji, Weichen, 2022. "Improving the performance and durability of low Pt-loaded MEAs by adjusting the distribution positions of Pt particles in cathode catalyst layer," Energy, Elsevier, vol. 253(C).
    2. Xuan, Lingfeng & Wang, Yancheng & Lan, Jinwei & Tao, Kai & Zhou, Caiying & Mei, Deqing, 2023. "Development of cathode ordered membrane electrode assembly based on TiO2 nanowire array and ultrasonic spraying," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    2. Guo, Lingyi & Chen, Li & Zhang, Ruiyuan & Peng, Ming & Tao, Wen-Quan, 2022. "Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity," Energy, Elsevier, vol. 253(C).
    3. Kim, Jaeyeon & Kim, Hyeok & Song, Hyeonjun & Kim, Dasol & Kim, Geon Hwi & Im, Dasom & Jeong, Youngjin & Park, Taehyun, 2021. "Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 227(C).
    4. Xiao, Fei & Chen, Tao & Gan, Zhongyu & Zhang, Ruixuan, 2023. "The influence of external operating conditions on membrane drying faults of proton-exchange membrane fuel cells," Energy, Elsevier, vol. 285(C).
    5. Kim, Kyunghyun & Kim, Jaeyeon & Choi, Heesoo & Kwon, Obeen & Jang, Yujae & Ryu, Sangbong & Lee, Heeyun & Shim, Kyuhwan & Park, Taehyun & Cha, Suk Won, 2023. "Pre-diagnosis of flooding and drying in proton exchange membrane fuel cells by bagging ensemble deep learning models using long short-term memory and convolutional neural networks," Energy, Elsevier, vol. 266(C).
    6. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    7. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    8. Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
    9. Ming Peng & Enci Dong & Li Chen & Yu Wang & Wen-Quan Tao, 2022. "Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 15(17), pages 1-21, August.
    10. Kong, Im Mo & Jung, Aeri & Kim, Young Sang & Kim, Min Soo, 2017. "Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 478-487.
    11. Lin, Rui & Dong, Mengcheng & Lan, Shunbo & Lou, Mingyu, 2023. "Numerical simulation of liquid water transport in perforated cracks of microporous layer," Energy, Elsevier, vol. 262(PB).
    12. Xuan, Lingfeng & Wang, Yancheng & Lan, Jinwei & Tao, Kai & Zhou, Caiying & Mei, Deqing, 2023. "Development of cathode ordered membrane electrode assembly based on TiO2 nanowire array and ultrasonic spraying," Energy, Elsevier, vol. 264(C).
    13. Chen, Ben & Zhou, Haoran & He, Shaowen & Meng, Kai & Liu, Yang & Cai, Yonghua, 2021. "Numerical simulation on purge strategy of proton exchange membrane fuel cell with dead-ended anode," Energy, Elsevier, vol. 234(C).
    14. Lin, Rui & Wang, Hong & Zhu, Yu, 2021. "Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density," Energy, Elsevier, vol. 221(C).
    15. Lin, Rui & Diao, Xiaoyu & Ma, Tiancai & Tang, Shenghao & Chen, Liang & Liu, Dengcheng, 2019. "Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design," Applied Energy, Elsevier, vol. 254(C).
    16. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Wang, Zhuo & Yang, Xi & Fang, Haoyan & Li, Qiming & Cao, Jing, 2024. "Investigation on performance of full-scale proton exchange membrane fuel cell: Porous foam flow field with integrated bipolar plate/gas diffusion layer," Energy, Elsevier, vol. 287(C).
    17. Meng, Kai & Chen, Ben & Zhou, Haoran & Shen, Jun & Shen, Zuguo & Tu, Zhengkai, 2022. "Investigation on degradation mechanism of hydrogen–oxygen proton exchange membrane fuel cell under current cyclic loading," Energy, Elsevier, vol. 242(C).
    18. Xiong, Yongqing & Cheng, Qian, 2023. "Effects of new energy vehicle adoption on provincial energy efficiency in China: From the perspective of regional imbalances," Energy, Elsevier, vol. 281(C).
    19. Chang, Yafei & Qin, Yanzhou & Yin, Yan & Zhang, Junfeng & Li, Xianguo, 2018. "Humidification strategy for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 230(C), pages 643-662.
    20. Chowdhury, Mohammad Ziauddin & Timurkutluk, Bora, 2018. "Transport phenomena of convergent and divergent serpentine flow fields for PEMFC," Energy, Elsevier, vol. 161(C), pages 104-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.