IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544222001049.html
   My bibliography  Save this article

Sorption-enhanced gasification - Analysis of process parameters impact on the system's operation with a dual fluidised bed model

Author

Listed:
  • Pitkäoja, Antti
  • Ritvanen, Jouni

Abstract

Sorption-enhanced gasification (SEG) is a promising technology for synthetic biofuel production from biomass. A semi-empirical 1-dimensional dual fluidised bed (DFB) model for the SEG process with coupled bubbling fluidised bed and circulating fluidised bed is developed. The model is used to analyse the operation of a pilot-scale adiabatic DFB system. A study of the gasifier operation temperature's influence on the system's mass and energy balances in the range of 650 °C–775 °C was conducted. In addition, an effect of the gasifier's steam-to-carbon (S/C) ratio on the system's mass and energy balances and producer gas composition in the range of 700 °C–775 °C was investigated for the production of synthetic biofuels. The model gave a good prediction for producer composition against experimental studies. The results show the effect of gasifier temperature and S/C ratio on the mass and energy balances of the system. The variation of the main parameters showed processes suitability for the production of dimethyl ether, methanol and synthetic natural gas. The simulations improved the understanding of the SEG processes physical operation. The knowledge of the system's operation is valuable in reactor system design and the development of the system's efficient operation ways for synthetic biofuel production.

Suggested Citation

  • Pitkäoja, Antti & Ritvanen, Jouni, 2022. "Sorption-enhanced gasification - Analysis of process parameters impact on the system's operation with a dual fluidised bed model," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222001049
    DOI: 10.1016/j.energy.2022.123201
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123201?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ritvanen, Jouni & Myöhänen, Kari & Pitkäoja, Antti & Hyppänen, Timo, 2021. "Modeling of industrial-scale sorption enhanced gasification process: One-dimensional simulations for the operation of coupled reactor system," Energy, Elsevier, vol. 226(C).
    2. Selina Hafner & Max Schmid & Günter Scheffknecht, 2021. "Parametric Study on the Adjustability of the Syngas Composition by Sorption-Enhanced Gasification in a Dual-Fluidized Bed Pilot Plant," Energies, MDPI, vol. 14(2), pages 1-17, January.
    3. Fuchs, Josef & Schmid, Johannes C. & Müller, Stefan & Hofbauer, Hermann, 2019. "Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 212-231.
    4. Abrar Inayat & Murni M. Ahmad & Suzana Yusup & Mohamed Ibrahim Abdul Mutalib, 2010. "Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach," Energies, MDPI, vol. 3(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitkäoja, Antti & Ritvanen, Jouni, 2023. "Simulation of sorption-enhanced gasification: H2O staging to a circulating fluidised bed gasifier to tailor the producer gas composition," Energy, Elsevier, vol. 266(C).
    2. Beatrice Castellani & Alberto Maria Gambelli & Elena Morini & Benedetto Nastasi & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    3. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    5. Sreejith, C.C. & Haridasan, Navaneeth & Muraleedharan, C. & Arun, P., 2014. "Allothermal air–steam gasification of biomass with CO2 (carbon dioxide) sorption: Performance prediction based on a chemical kinetic model," Energy, Elsevier, vol. 69(C), pages 399-408.
    6. Vincenzo Palma & Concetta Ruocco & Eugenio Meloni & Antonio Ricca, 2017. "Influence of Catalytic Formulation and Operative Conditions on Coke Deposition over CeO 2 -SiO 2 Based Catalysts for Ethanol Reforming," Energies, MDPI, vol. 10(7), pages 1-13, July.
    7. Selina Hafner & Max Schmid & Günter Scheffknecht, 2021. "Parametric Study on the Adjustability of the Syngas Composition by Sorption-Enhanced Gasification in a Dual-Fluidized Bed Pilot Plant," Energies, MDPI, vol. 14(2), pages 1-17, January.
    8. Pala, Laxmi Prasad Rao & Wang, Qi & Kolb, Gunther & Hessel, Volker, 2017. "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, Elsevier, vol. 101(C), pages 484-492.
    9. Vera Marcantonio & Enrico Bocci & Danilo Monarca, 2019. "Development of a Chemical Quasi-Equilibrium Model of Biomass Waste Gasification in a Fluidized-Bed Reactor by Using Aspen Plus," Energies, MDPI, vol. 13(1), pages 1-15, December.
    10. Yang, Shiliang & Wan, Zhanghao & Wang, Shuai & Wang, Hua, 2020. "Computational fluid study of radial and axial segregation characteristics in a dual fluidized bed reactor system," Energy, Elsevier, vol. 209(C).
    11. Sharma, Ashokkumar M. & Kumar, Ajay & Madihally, Sundararajan & Whiteley, James R. & Huhnke, Raymond L., 2014. "Prediction of biomass-generated syngas using extents of major reactions in a continuous stirred-tank reactor," Energy, Elsevier, vol. 72(C), pages 222-232.
    12. Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2023. "Numerical and experimental investigation of co-combustion of chicken manure and lignite blends in a CFBB with novel compact combustion chamber," Energy, Elsevier, vol. 285(C).
    13. Upadhyay, Darshit S. & Khosla, Aakash & Chaudhary, Amita & Patel, Rajesh N., 2019. "Effect of catalyst to lignite ratio on the performance of a pilot scale fixed bed gasifier," Energy, Elsevier, vol. 189(C).
    14. Vera Marcantonio & Marcello De Falco & Enrico Bocci, 2022. "Non-Thermal Plasma Technology for CO 2 Conversion—An Overview of the Most Relevant Experimental Results and Kinetic Models," Energies, MDPI, vol. 15(20), pages 1-18, October.
    15. Fürsatz, K. & Fuchs, J. & Benedikt, F. & Kuba, M. & Hofbauer, H., 2021. "Effect of biomass fuel ash and bed material on the product gas composition in DFB steam gasification," Energy, Elsevier, vol. 219(C).
    16. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Sébastien Pissot & Henrik Thunman & Peter Samuelsson & Martin Seemann, 2021. "Production of Negative-Emissions Steel Using a Reducing Gas Derived from DFB Gasification," Energies, MDPI, vol. 14(16), pages 1-32, August.
    18. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    19. Ahmed, Tigabwa Y. & Ahmad, Murni M. & Yusup, Suzana & Inayat, Abrar & Khan, Zakir, 2012. "Mathematical and computational approaches for design of biomass gasification for hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2304-2315.
    20. Parvez, Ashak Mahmud & Hafner, Selina & Hornberger, Matthias & Schmid, Max & Scheffknecht, Günter, 2021. "Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222001049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.