IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v242y2022ics0360544221032485.html
   My bibliography  Save this article

Investigation of aerodynamic forces and flow field of an H-type vertical axis wind turbine based on bionic airfoil

Author

Listed:
  • Zhang, Yanfeng
  • Guo, Zhiping
  • Zhu, Xinyu
  • Li, Yuan
  • Song, Xiaowen
  • Cai, Chang
  • Kamada, Yasunari
  • Maeda, Takao
  • Li, Qing’an

Abstract

This paper investigates the effect of bionic airfoil on the aerodynamic characteristic and flow field of an H-type vertical axis wind turbine (VAWT). The pressure acting on the blade surface and flow field around the blade were predicted at different tip speed ratios (TSRs) and the angles of attack were predicted by numerical simulation. As a result, it was showed that the maximum value of lift force coefficient was 0.723 for baseline airfoil at the angle of attack 12° and was 0.743 for bionic airfoil at the angle of attack 14°. When the angle of attack was equal or greater than 14°, the static bionic airfoil showed better lift characteristic. Moreover, the maximum value of power coefficient occurred at TSR = 2.58 for the simulation, but the maximum value of torque coefficient was identified at TSR = 2.19. Meanwhile, the growth rates of the power coefficient were 7.02% at TSR = 1.38, 7.35% at TSR = 2.19, and 3.42% at TSR = 2.58 for simulation between baseline blades and bionic blades. The power performance of VAWT improved in dynamic stall for bionic airfoil by delaying stall on the blade's surface and promoting the laminar-to-turbulent transition to improve the power performance of wind turbine at the low TSRs for the mainstream wind velocity of 8.0 m/s. The research results were helpful to predict the performance of VAWTs under various wind environments and to improve the aerodynamic performance of VAWTs.

Suggested Citation

  • Zhang, Yanfeng & Guo, Zhiping & Zhu, Xinyu & Li, Yuan & Song, Xiaowen & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Li, Qing’an, 2022. "Investigation of aerodynamic forces and flow field of an H-type vertical axis wind turbine based on bionic airfoil," Energy, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032485
    DOI: 10.1016/j.energy.2021.122999
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122999?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (Part I: Power performance)," Energy, Elsevier, vol. 113(C), pages 713-722.
    2. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2015. "Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine," Energy, Elsevier, vol. 90(P1), pages 784-795.
    3. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.
    4. Zhong, Junwei & Li, Jingyin & Guo, Penghua & Wang, Yu, 2019. "Dynamic stall control on a vertical axis wind turbine aerofoil using leading-edge rod," Energy, Elsevier, vol. 174(C), pages 246-260.
    5. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction," Energy, Elsevier, vol. 189(C).
    6. Jin, Xin & Wang, Yaming & Ju, Wenbin & He, Jiao & Xie, Shuangyi, 2018. "Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation," Renewable Energy, Elsevier, vol. 115(C), pages 41-53.
    7. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    8. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    9. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    10. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.
    11. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed Vertical Axis Wind Turbine in three-dimensional analysis (Part II: For predicting flow field and performance)," Energy, Elsevier, vol. 104(C), pages 295-307.
    12. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    13. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics)," Energy, Elsevier, vol. 113(C), pages 1304-1315.
    14. Li, Qing’an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades)," Renewable Energy, Elsevier, vol. 96(PA), pages 928-939.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, He & Ruiz, Alexis & Li, Ni, 2023. "Fast online reinforcement learning control of small lift-driven vertical axis wind turbines with an active programmable four bar linkage mechanism," Energy, Elsevier, vol. 262(PA).
    2. Li, Yan & Tong, Guoqiang & Ma, Yunfei & Feng, Fang & Tagawa, Kotaro, 2023. "Numerical study on aerodynamic performance improvement of the straight-bladed vertical axis wind turbine by using wind concentrators," Renewable Energy, Elsevier, vol. 219(P2).
    3. Shen, Zhuang & Gong, Shuguang & Xie, Guilan & Lu, Haishan & Guo, Weiyu, 2024. "Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Li, Qing’an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake effects on a Horizontal Axis Wind Turbine in field experiments (Part I: Horizontal axis direction)," Energy, Elsevier, vol. 134(C), pages 482-492.
    3. Ardaneh, Fatemeh & Abdolahifar, Abolfazl & Karimian, S.M.H., 2022. "Numerical analysis of the pitch angle effect on the performance improvement and flow characteristics of the 3-PB Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 239(PD).
    4. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed Vertical Axis Wind Turbine in three-dimensional analysis (Part II: For predicting flow field and performance)," Energy, Elsevier, vol. 104(C), pages 295-307.
    5. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    6. Lee, Kung-Yen & Tsao, Shao-Hua & Tzeng, Chieh-Wen & Lin, Huei-Jeng, 2018. "Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building," Applied Energy, Elsevier, vol. 209(C), pages 383-391.
    7. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Visualization of the flow field and aerodynamic force on a Horizontal Axis Wind Turbine in turbulent inflows," Energy, Elsevier, vol. 111(C), pages 57-67.
    8. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
    10. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake characteristics of a Horizontal Axis Wind Turbine in vertical axis direction with field experiments," Energy, Elsevier, vol. 141(C), pages 262-272.
    11. Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.
    12. Kamada, Yasunari & Li, Qing'an & Maeda, Takao & Yamada, Keisuke, 2019. "Wind tunnel experimental investigation of flow field around two-dimensional single hill models," Renewable Energy, Elsevier, vol. 136(C), pages 1107-1118.
    13. Li, Qingan & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Dong, Yehong & Zhang, Fanghong & Xu, Jianzhong, 2021. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method," Energy, Elsevier, vol. 225(C).
    14. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics)," Energy, Elsevier, vol. 113(C), pages 1304-1315.
    15. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.
    16. Yanzhao Yang & Zhiping Guo & Qing Song & Yanfeng Zhang & Qing’an Li, 2018. "Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations," Energies, MDPI, vol. 11(6), pages 1-15, June.
    17. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (Part II: Dynamic pressure measurement)," Energy, Elsevier, vol. 112(C), pages 574-587.
    18. Wang, Wei-Cheng & Wang, Jheng-Jie & Chong, Wen Tong, 2019. "The effects of unsteady wind on the performances of a newly developed cross-axis wind turbine: A wind tunnel study," Renewable Energy, Elsevier, vol. 131(C), pages 644-659.
    19. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Investigation of power performance and wake on a straight-bladed vertical axis wind turbine with field experiments," Energy, Elsevier, vol. 141(C), pages 1113-1123.
    20. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Yusuke, Nishida, 2016. "Effect of turbulence on power performance of a Horizontal Axis Wind Turbine in yawed and no-yawed flow conditions," Energy, Elsevier, vol. 109(C), pages 703-711.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.