IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i6p2154-2177.html
   My bibliography  Save this article

Deep‐sea nodules versus land ores: A comparative systems analysis of mining and processing wastes for battery‐metal supply chains

Author

Listed:
  • Daina Paulikas
  • Steven Katona
  • Erika Ilves
  • Saleem H. Ali

Abstract

To meet UN Sustainable Development goals, a clean‐energy transition with minimal ecological impact from its raw‐material supply chain is essential. Polymetallic nodules lying unattached on the abyssal seafloor of the Pacific Ocean's Clarion Clipperton Zone contain four critical metals (nickel, cobalt, manganese, copper) in large quantities, and the International Seabed Authority may soon enact regulations to allow their commercial exploitation. There are complex global ecological implications of doing so. Nodule exploitation would damage abyssal habitats and may impact midwater‐column organisms; but in the absence of nodule exploitation, terrestrial mining's environmental and social impacts would intensify. This paper adds to the growing systems‐based literature on nodule collection by contributing a preliminary material flow analysis of global‐average cradle‐to‐gate waste streams using either nodules or terrestrial sources as part of a preliminary life cycle assessment, as well as integrated risk assessments of those waste streams. System endpoints are battery precursors (nickel sulfate, cobalt sulfate, manganese sulfate), copper cathode, and a 40% or 75% manganese product. Overburden, tailings, and processing and refining wastes from terrestrial mining are compared to the nodule industry's anticipated offshore and onshore wastes, including sediment disrupted by nodule‐collection machines. Robustness to offshore technology assumptions is tested using Monte Carlo simulation, while onshore mass‐flow scenarios incorporate a “negligible‐waste” flowsheet and high‐waste flowsheets where manganese is not recovered. A billion‐EV scenario incorporates the effects of declining terrestrial copper and nickel ore grades. Results imply that metal production from nodules may produce less waste of lower severities, caveated by uncertain impacts of disrupted sediment.

Suggested Citation

  • Daina Paulikas & Steven Katona & Erika Ilves & Saleem H. Ali, 2022. "Deep‐sea nodules versus land ores: A comparative systems analysis of mining and processing wastes for battery‐metal supply chains," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2154-2177, December.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:6:p:2154-2177
    DOI: 10.1111/jiec.13225
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13225
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard Plevin & Mark Delucchi & Felix Creutzig, 2014. "Response to Comments on “Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation …”," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 468-470, May.
    2. Northey, S. & Mohr, S. & Mudd, G.M. & Weng, Z. & Giurco, D., 2014. "Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 190-201.
    3. Konstantinos Komnitsas, 2020. "Social License to Operate in Mining: Present Views and Future Trends," Resources, MDPI, vol. 9(6), pages 1-15, June.
    4. Laura J. Sonter & Marie C. Dade & James E. M. Watson & Rick K. Valenta, 2020. "Renewable energy production will exacerbate mining threats to biodiversity," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    5. Armstrong, Claire W. & Foley, Naomi S. & Tinch, Rob & van den Hove, Sybille, 2012. "Services from the deep: Steps towards valuation of deep sea goods and services," Ecosystem Services, Elsevier, vol. 2(C), pages 2-13.
    6. Månberger, André & Stenqvist, Björn, 2018. "Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development," Energy Policy, Elsevier, vol. 119(C), pages 226-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deberdt, Raphael & James, Cara B.G., 2024. "Self-governance at depth: The international seabed authority and verification culture of the deep-sea mining industry," Resources Policy, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yi & Bai, Wenbo & Zhang, Yijun, 2024. "Resilience assessment of trade network in copper industry chain and the risk resistance capacity of core countries: Based on complex network," Resources Policy, Elsevier, vol. 92(C).
    2. Heijlen, Wouter & Franceschi, Guy & Duhayon, Chris & Van Nijen, Kris, 2021. "Assessing the adequacy of the global land-based mine development pipeline in the light of future high-demand scenarios: The case of the battery-metals nickel (Ni) and cobalt (Co)," Resources Policy, Elsevier, vol. 73(C).
    3. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    4. Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, Elsevier, vol. 163(C), pages 114-133.
    5. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    6. Laure Thierry de Ville d'Avray & Dominique Ami & Anne Chenuil & Romain David & Jean-Pierre Feral, 2017. "Application of the Ecosystem Service Concept to a Local-Scale: The Cases of Coralligenous Habitats in the North-Western Mediterranean Sea," Working Papers halshs-01624589, HAL.
    7. Norton, Daniel & Hynes, Stephen, 2014. "Valuing the non-market benefits arising from the implementation of the EU Marine Strategy Framework Directive," Ecosystem Services, Elsevier, vol. 10(C), pages 84-96.
    8. Lèbre, Éléonore & Owen, John R. & Kemp, Deanna & Valenta, Rick K., 2022. "Complex orebodies and future global metal supply: An introduction," Resources Policy, Elsevier, vol. 77(C).
    9. André Månberger, 2021. "Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources," Biophysical Economics and Resource Quality, Springer, vol. 6(2), pages 1-15, June.
    10. Norton, D. & Hynes, S., 2014. "A Choice Experiment Approach to assess the costs of degradation as specified by the EU Marine Strategy Framework Directive," Working Papers 186382, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    11. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    12. Karan Bhuwalka & Eunseo Choi & Elizabeth A. Moore & Richard Roth & Randolph E. Kirchain & Elsa A. Olivetti, 2023. "A hierarchical Bayesian regression model that reduces uncertainty in material demand predictions," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 43-55, February.
    13. Rickard Arvidsson & Anne‐Marie Tillman & Björn A. Sandén & Matty Janssen & Anders Nordelöf & Duncan Kushnir & Sverker Molander, 2018. "Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1286-1294, December.
    14. Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    15. Toni Eerola, 2022. "Territories of Contention: The Importance of Project Location in Mining-Related Disputes in Finland from the Geosystem Services Perspective," Resources, MDPI, vol. 11(12), pages 1-20, November.
    16. Miller, Hugh & Dikau, Simon & Svartzman, Romain & Dees, Stéphane, 2023. "The stumbling block in ‘the race of our lives’: transition-critical materials, financial risks and the NGFS climate scenarios," LSE Research Online Documents on Economics 118095, London School of Economics and Political Science, LSE Library.
    17. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Hatton MacDonald, Darla & Ardeshiri, Ali & Rose, John M. & Russell, Bayden D. & Connell, Sean D., 2015. "Valuing coastal water quality: Adelaide, South Australia metropolitan area," Marine Policy, Elsevier, vol. 52(C), pages 116-124.
    19. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
    20. Karlsson, Ida & Rootzén, Johan & Johnsson, Filip, 2020. "Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:6:p:2154-2177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.