IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221024348.html
   My bibliography  Save this article

Influence of leading-edge tubercles on the aerodynamic performance of a horizontal-axis wind turbine: A numerical study

Author

Listed:
  • Ke, Wenliang
  • Hashem, Islam
  • Zhang, Wenwu
  • Zhu, Baoshan

Abstract

Leading-edge tubercles on the humpback whale pectoral fin are known to have aerodynamic benefits, particularly in the post-stall regime. In this research, a horizontal-axis wind turbine blade was modelled with tubercles distributed on its leading edge to mimic the humpback whale pectoral fin. A parametric study of the effect of tubercles on the reference NREL Phase VI wind turbine was conducted via computational fluid dynamics. Three parameters—amplitude, wavelength, and tubercle location along the blade span—were varied. The results showed that tubercles have negative effects on the turbine performance at wind speeds (V∞) ≤ 7 m/s. However, when tubercles are placed over 60% of the blade span, the backflow area can be eliminated at V∞ = 10 m/s. It is found that the vortices in the stable-flow zone over the suction surface can be reduced when tubercles of a relatively small amplitude-wavelength ratio are employed, thereby maintaining turbine performance. Compared with the reference blade, tubercles provided benefits at higher wind speeds. The generated vortices due to the presence of tubercles, leading to both blockage effects and stall delay. The results revealed that the pressure on the suction surface of the tubercled blade decreases, thereby increasing lift and enhancing the turbine performance.

Suggested Citation

  • Ke, Wenliang & Hashem, Islam & Zhang, Wenwu & Zhu, Baoshan, 2022. "Influence of leading-edge tubercles on the aerodynamic performance of a horizontal-axis wind turbine: A numerical study," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221024348
    DOI: 10.1016/j.energy.2021.122186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2017. "Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis," Renewable Energy, Elsevier, vol. 113(C), pages 512-531.
    2. Hashem, I. & Mohamed, M.H. & Hafiz, A.A., 2017. "Aero-acoustics noise assessment for Wind-Lens turbine," Energy, Elsevier, vol. 118(C), pages 345-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Hong & Li, Deyou & Zhang, Ruiyi & Wang, Hongjie & He, Yurong & Zuo, Zhigang & Liu, Shuhong, 2024. "Effect of discontinuous biomimetic leading-edge protuberances on the performance of vertical axis wind turbines," Applied Energy, Elsevier, vol. 364(C).
    2. Gonçalves, Afonso N.C. & Pereira, José M.C. & Sousa, João M.M., 2022. "Passive control of dynamic stall in a H-Darrieus Vertical Axis Wind Turbine using blade leading-edge protuberances," Applied Energy, Elsevier, vol. 324(C).
    3. Wenhua Duan & Weijie Chen & Xinyu Zhao & Weiyang Qiao, 2023. "Numerical Studies on the Effect of Leading Edge Tubercles on a Low-Pressure Turbine Cascade," Energies, MDPI, vol. 16(11), pages 1-16, May.
    4. Campos, Henrique M. & Salviano, Leandro O. & Pantaleão, Aluisio V., 2024. "Leading-edge tubercles as an alternative to increasing a Francis turbine torque generation," Energy, Elsevier, vol. 298(C).
    5. Sun, Yukun & Qian, Yaoru & Gao, Yang & Wang, Tongguang & Wang, Long, 2024. "Stall control on the wind turbine airfoil via the single and dual-channel of combining bowing and suction technique," Energy, Elsevier, vol. 290(C).
    6. Wang, Longjun & Alam, Md. Mahbub & Rehman, Shafiqur & Zhou, Yu, 2022. "Effects of blowing and suction jets on the aerodynamic performance of wind turbine airfoil," Renewable Energy, Elsevier, vol. 196(C), pages 52-64.
    7. Zhang, Zhihao & Kuang, Limin & Han, Zhaolong & Zhou, Dai & Zhao, Yongsheng & Bao, Yan & Duan, Lei & Tu, Jiahuang & Chen, Yaoran & Chen, Mingsheng, 2023. "Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines," Energy, Elsevier, vol. 281(C).
    8. Wang, Hao & Yi, Minyi & Zhang, Zutao & Zhang, Hexiang & Liu, Jizong & Zhu, Zhongyin & Wang, Qijun & Yuan, Yanping, 2023. "A wind-solar energy harvester based on airflow enhancement mechanism for rail-side devices," Energy, Elsevier, vol. 283(C).
    9. Zhu, Mingkang & Zhang, Jiacheng & Wang, Zhaohui & Yu, Xin & Zhang, Yuejun & Zhu, Jianyang & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Double-blade structured triboelectric–electromagnetic hybrid generator with aerodynamic enhancement for breeze energy harvesting," Applied Energy, Elsevier, vol. 326(C).
    10. Fan, Menghao & Sun, Zhaocheng & Dong, Xiangwei & Li, Zengliang, 2022. "Numerical and experimental investigation of bionic airfoils with leading-edge tubercles at a low-Re in considering stall delay," Renewable Energy, Elsevier, vol. 200(C), pages 154-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Paulo A.S.F. & Tsoutsanis, Panagiotis & Vaz, Jerson R.P. & Macias, Marianela M., 2024. "A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver," Energy, Elsevier, vol. 294(C).
    2. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    3. Pantua, Conrad Allan Jay & Calautit, John Kaiser & Wu, Yupeng, 2020. "A fluid-structure interaction (FSI) and energy generation modelling for roof mounted renewable energy installations in buildings for extreme weather and typhoon resilience," Renewable Energy, Elsevier, vol. 160(C), pages 770-787.
    4. Abdel Hameed, Hossam S. & Hashem, Islam & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Shape optimization of a shrouded Archimedean-spiral type wind turbine for small-scale applications," Energy, Elsevier, vol. 263(PB).
    5. Dessoky, Amgad & Bangga, Galih & Lutz, Thorsten & Krämer, Ewald, 2019. "Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology," Energy, Elsevier, vol. 175(C), pages 76-97.
    6. Mohamed, M.H. & Dessoky, A. & Alqurashi, Faris, 2019. "Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis," Energy, Elsevier, vol. 179(C), pages 1217-1234.
    7. Hamid, Hossam & Mohamed Abd El Maksoud, Rafea, 2024. "An optimization study of passive flow control mechanism for a seashell-shaped wind turbine," Energy, Elsevier, vol. 289(C).
    8. Michal Lipian & Pawel Czapski & Damian Obidowski, 2020. "Fluid–Structure Interaction Numerical Analysis of a Small, Urban Wind Turbine Blade," Energies, MDPI, vol. 13(7), pages 1-15, April.
    9. Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
    10. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz, 2021. "Fluid structure interaction analysis of the operating Savonius wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 272-284.
    11. Hashem, I. & Mohamed, M.H., 2018. "Aerodynamic performance enhancements of H-rotor Darrieus wind turbine," Energy, Elsevier, vol. 142(C), pages 531-545.
    12. Jorge Mario Tamayo-Avendaño & Ivan David Patiño-Arcila & César Nieto-Londoño & Julián Sierra-Pérez, 2023. "Fluid–Structure Interaction Analysis of a Wind Turbine Blade with Passive Control by Bend–Twist Coupling," Energies, MDPI, vol. 16(18), pages 1-26, September.
    13. Al-Sulaiman, Fahad A., 2017. "Exergoeconomic analysis of ejector-augmented shrouded wind turbines," Energy, Elsevier, vol. 128(C), pages 264-270.
    14. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Ziaul Huque & Fadoua Zemmouri & Haidong Lu & Raghava Rao Kommalapati, 2024. "Fluid–Structure Interaction Simulations of Wind Turbine Blades with Pointed Tips," Energies, MDPI, vol. 17(5), pages 1-29, February.
    16. Koichi Watanabe & Yuji Ohya & Takanori Uchida, 2019. "Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct," Energies, MDPI, vol. 12(16), pages 1-17, August.
    17. Arteaga-López, Ernesto & Ángeles-Camacho, Cesar & Bañuelos-Ruedas, Francisco, 2019. "Advanced methodology for feasibility studies on building-mounted wind turbines installation in urban environment: Applying CFD analysis," Energy, Elsevier, vol. 167(C), pages 181-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221024348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.