IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221024063.html
   My bibliography  Save this article

Resilient decentralized optimization of chance constrained electricity-gas systems over lossy communication networks

Author

Listed:
  • Qian, Tong
  • Chen, Xingyu
  • Xin, Yanli
  • Tang, Wenhu
  • Wang, Lixiao

Abstract

With the gradual growth of natural gas units, the coupling between power networks and natural gas networks has deepened, and the synergistic operation between them has become more and more important. At the same time, the integration of uncertain renewable energy brings challenges to the economic and safe operation of power and natural gas interconnected systems. In order to cope with the operational risks brought by uncertain wind sources to the interconnected system, this paper adopts the method of distributionally robust chance constraints, where an ambiguity set related to the moment information of a small amount of historical wind power forecast error data is attained in a data-driven way. Then the chance constrained problem is transformed into a formation that is easily solved. For different situations with or without a central coordinator of the two entities of electricity and gas, this work respectively gives the solution steps based on the relaxed alternating direction method of multipliers. In the case of no coordinator, this paper particularly presents the convergence performance when the exchange of information has a packet loss rate during iterative calculation processes. The simulation results show that compared with the method of traditional Gaussian chance constrained optimization and symmetrical distributionally robust chance constrained optimization, the moment-based distributionally robust chance constrained optimization can achieve a lowest probability of chance constraint violation at the expense of energy dispatch costs. In addition, compared with the traditional alternating direction method of multipliers, the relaxed alternating direction method of multipliers can achieve the nearly same energy dispatch costs with a smaller number of iterations. It is also found that the packet loss of the early iteration process may be the main factor that has a degradation impact on the convergence process rather than the nominal loss probability.

Suggested Citation

  • Qian, Tong & Chen, Xingyu & Xin, Yanli & Tang, Wenhu & Wang, Lixiao, 2022. "Resilient decentralized optimization of chance constrained electricity-gas systems over lossy communication networks," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221024063
    DOI: 10.1016/j.energy.2021.122158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian, Tong & Tang, Wenhu & Wu, Qinghua, 2020. "A fully decentralized dual consensus method for carbon trading power dispatch with wind power," Energy, Elsevier, vol. 203(C).
    2. Seljom, Pernille & Kvalbein, Lisa & Hellemo, Lars & Kaut, Michal & Ortiz, Miguel Muñoz, 2021. "Stochastic modelling of variable renewables in long-term energy models: Dataset, scenario generation & quality of results," Energy, Elsevier, vol. 236(C).
    3. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    4. Xiang, Yue & Wu, Gang & Shen, Xiaodong & Ma, Yuhang & Gou, Jing & Xu, Weiting & Liu, Junyong, 2021. "Low-carbon economic dispatch of electricity-gas systems," Energy, Elsevier, vol. 226(C).
    5. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.
    6. Tan, Jin & Wu, Qiuwei & Wei, Wei & Liu, Feng & Li, Canbing & Zhou, Bin, 2020. "Decentralized robust energy and reserve Co-optimization for multiple integrated electricity and heating systems," Energy, Elsevier, vol. 205(C).
    7. Faridpak, Behdad & Farrokhifar, Meisam & Murzakhanov, Ilgiz & Safari, Amin, 2020. "A series multi-step approach for operation Co-optimization of integrated power and natural gas systems," Energy, Elsevier, vol. 204(C).
    8. Wu, Gang & Xiang, Yue & Liu, Junyong & Shen, Xiaodong & Cheng, Shikun & Hong, Bowen & Jawad, Shafqat, 2020. "Distributed energy-reserve Co-Optimization of electricity and natural gas systems with multi-type reserve resources," Energy, Elsevier, vol. 207(C).
    9. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    10. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2021. "Uncertainty analysis of the impact of increasing levels of gas and electricity network integration and storage on Techno-Economic-Environmental performance," Energy, Elsevier, vol. 222(C).
    11. Tan, Jin & Wu, Qiuwei & Hu, Qinran & Wei, Wei & Liu, Feng, 2020. "Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty," Applied Energy, Elsevier, vol. 260(C).
    12. Fang, Xin & Hodge, Bri-Mathias & Jiang, Huaiguang & Zhang, Yingchen, 2019. "Decentralized wind uncertainty management: Alternating direction method of multipliers based distributionally-robust chance constrained optimal power flow," Applied Energy, Elsevier, vol. 239(C), pages 938-947.
    13. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2021. "Stochastic optimal planning scheme of a zero-carbon multi-energy system (ZC-MES) considering the uncertainties of individual energy demand and renewable resources: An integrated chance-constrained and," Energy, Elsevier, vol. 232(C).
    14. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
    15. Fang, Xin & Cui, Hantao & Yuan, Haoyu & Tan, Jin & Jiang, Tao, 2019. "Distributionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
    17. Zhou, Huansheng & Zheng, J.H. & Li, Zhigang & Wu, Q.H. & Zhou, X.X., 2019. "Multi-stage contingency-constrained co-planning for electricity-gas systems interconnected with gas-fired units and power-to-gas plants using iterative Benders decomposition," Energy, Elsevier, vol. 180(C), pages 689-701.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Yueqing & Qian, Tong & Li, Weiwei & Zhao, Wei & Tang, Wenhu & Chen, Xingyu & Yu, Zeyuan, 2023. "Mobile energy storage systems with spatial–temporal flexibility for post-disaster recovery of power distribution systems: A bilevel optimization approach," Energy, Elsevier, vol. 282(C).
    2. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    3. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    4. Baining Zhao & Xuzhe Wang & Tianyu Zhang & Rongye Shi & Fengli Xu & Fanhang Man & Erbing Chen & Yang Li & Yong Li & Tao Sun & Xinlei Chen, 2024. "Estimating and modeling spontaneous mobility changes during the COVID-19 pandemic without stay-at-home orders," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    2. Skalyga, Mikhail & Wu, Qiuwei & Zhang, Menglin, 2021. "Uncertainty-fully-aware coordinated dispatch of integrated electricity and heat system," Energy, Elsevier, vol. 224(C).
    3. Zhao, Baining & Qian, Tong & Tang, Wenhu & Liang, Qiheng, 2022. "A data-enhanced distributionally robust optimization method for economic dispatch of integrated electricity and natural gas systems with wind uncertainty," Energy, Elsevier, vol. 243(C).
    4. Sayed, Ahmed Rabee & Wang, Cheng & Chen, Sheng & Shang, Ce & Bi, Tianshu, 2021. "Distributionally robust day-ahead operation of power systems with two-stage gas contracting," Energy, Elsevier, vol. 231(C).
    5. Jiandong Duan & Fan Liu & Yao Yang & Zhuanting Jin, 2021. "Flexible Dispatch for Integrated Power and Gas Systems Considering Power-to-Gas and Demand Response," Energies, MDPI, vol. 14(17), pages 1-26, September.
    6. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    7. Jona Maurer & Jochen Illerhaus & Pol Jané Soneira & Sören Hohmann, 2022. "Distributed Optimization of District Heating Networks Using Optimality Condition Decomposition," Energies, MDPI, vol. 15(18), pages 1-21, September.
    8. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    11. Pan, Zhenning & Yu, Tao & Li, Jie & Qu, Kaiping & Yang, Bo, 2020. "Risk-averse real-time dispatch of integrated electricity and heat system using a modified approximate dynamic programming approach," Energy, Elsevier, vol. 198(C).
    12. Chen, Changming & Wu, Xueyan & Li, Yan & Zhu, Xiaojun & Li, Zesen & Ma, Jien & Qiu, Weiqiang & Liu, Chang & Lin, Zhenzhi & Yang, Li & Wang, Qin & Ding, Yi, 2021. "Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages," Applied Energy, Elsevier, vol. 302(C).
    13. Oduro, Richard A. & Taylor, Peter G., 2023. "Future pathways for energy networks: A review of international experiences in high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    14. Faridpak, Behdad & Farrokhifar, Meisam & Murzakhanov, Ilgiz & Safari, Amin, 2020. "A series multi-step approach for operation Co-optimization of integrated power and natural gas systems," Energy, Elsevier, vol. 204(C).
    15. Belderbos, Andreas & Valkaert, Thomas & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William, 2020. "Facilitating renewables and power-to-gas via integrated electrical power-gas system scheduling," Applied Energy, Elsevier, vol. 275(C).
    16. Tan, Jin & Wu, Qiuwei & Zhang, Menglin & Wei, Wei & Liu, Feng & Pan, Bo, 2021. "Chance-constrained energy and multi-type reserves scheduling exploiting flexibility from combined power and heat units and heat pumps," Energy, Elsevier, vol. 233(C).
    17. Wang, Chong & Ju, Ping & Wu, Feng & Lei, Shunbo & Hou, Yunhe, 2021. "Coordinated scheduling of integrated power and gas grids in consideration of gas flow dynamics," Energy, Elsevier, vol. 220(C).
    18. Fang, Xin & Cui, Hantao & Yuan, Haoyu & Tan, Jin & Jiang, Tao, 2019. "Distributionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Zhou, Bo & Chen, Guo & Song, Qiankun & Dong, Zhao Yang, 2020. "Robust chance-constrained programming approach for the planning of fast-charging stations in electrified transportation networks," Applied Energy, Elsevier, vol. 262(C).
    20. Yang, Hangbo & You, Pengcheng & Shang, Ce, 2021. "Distributed planning of electricity and natural gas networks and energy hubs," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221024063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.