IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224011939.html
   My bibliography  Save this article

Fast distributed co-optimization of electricity and natural gas systems hedging against wind fluctuation and uncertainty

Author

Listed:
  • Zhao, Baining
  • Qian, Tong
  • Li, Weiwei
  • Xin, Yanli
  • Zhao, Wei
  • Lin, Zekang
  • Tang, Wenhu
  • Jin, Xin
  • Cao, Wangzhang
  • Pan, Tingzhe

Abstract

The synergistic operation of integrated electricity and natural gas systems (IEGS) in the presence of wind power necessitates a distributed optimization framework that ensures information privacy. However, incorporating wind power penetration leads to distributed optimization problems including uncertainty and unstable distributed algorithm’s convergence. With the increasing proportion of wind power in IEGS, fluctuating wind power penetration highly affects the convergence of distributed optimization solutions, resulting in uncontrollable optimization time of the distributed algorithm. Accordingly, this paper investigates the impact of wind fluctuation and uncertainty on distributed IEGS optimization and proposes a novel fast distributed co-optimization framework. Specifically, an adaptive alternating direction method of multipliers (ADMM) is developed to accommodate wind fluctuation. Based on designed rules, the penalty parameter is updated in every step to maximize the gradient of the optimization objective. The experiments are conducted using real wind power generation data sourced from a wind farm in Australia and a classical IEGS framework composed of the IEEE 24-bus electricity system and a 12-node natural gas system. Compared to original ADMM and residual balancing ADMM, the proposed framework achieves an average reduction of 0–91.4% in the number of iterative steps for multiple solution iterations across various scenarios, with a corresponding decrease in the standard deviation by 13.8%–93.0%.

Suggested Citation

  • Zhao, Baining & Qian, Tong & Li, Weiwei & Xin, Yanli & Zhao, Wei & Lin, Zekang & Tang, Wenhu & Jin, Xin & Cao, Wangzhang & Pan, Tingzhe, 2024. "Fast distributed co-optimization of electricity and natural gas systems hedging against wind fluctuation and uncertainty," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011939
    DOI: 10.1016/j.energy.2024.131420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. S. He & H. Yang & S. L. Wang, 2000. "Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 337-356, August.
    2. Liu, Rong-Peng & Sun, Wei & Yin, Wenqian & Zhou, Dali & Hou, Yunhe, 2021. "Extended convex hull-based distributed optimal energy flow of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 287(C).
    3. Qian, Tong & Tang, Wenhu & Wu, Qinghua, 2020. "A fully decentralized dual consensus method for carbon trading power dispatch with wind power," Energy, Elsevier, vol. 203(C).
    4. Zhao, Baining & Qian, Tong & Tang, Wenhu & Liang, Qiheng, 2022. "A data-enhanced distributionally robust optimization method for economic dispatch of integrated electricity and natural gas systems with wind uncertainty," Energy, Elsevier, vol. 243(C).
    5. Li, Weiwei & Qian, Tong & Zhang, Yin & Shen, Yueqing & Wu, Chenghu & Tang, Wenhu, 2023. "Distributionally robust chance-constrained planning for regional integrated electricity–heat systems with data centers considering wind power uncertainty," Applied Energy, Elsevier, vol. 336(C).
    6. Wang, Cheng & Wei, Wei & Wang, Jianhui & Bi, Tianshu, 2019. "Convex optimization based adjustable robust dispatch for integrated electric-gas systems considering gas delivery priority," Applied Energy, Elsevier, vol. 239(C), pages 70-82.
    7. Wu, Gang & Xiang, Yue & Liu, Junyong & Gou, Jing & Shen, Xiaodong & Huang, Yuan & Jawad, Shafqat, 2020. "Decentralized day-ahead scheduling of multi-area integrated electricity and natural gas systems considering reserve optimization," Energy, Elsevier, vol. 198(C).
    8. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.
    9. Zhang, Mingyang & Zhou, Ming & Wu, Zhaoyuan & Yang, Hongji & Li, Gengyin, 2022. "A ramp capability-aware scheduling strategy for integrated electricity-gas systems," Energy, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Baining & Qian, Tong & Tang, Wenhu & Liang, Qiheng, 2022. "A data-enhanced distributionally robust optimization method for economic dispatch of integrated electricity and natural gas systems with wind uncertainty," Energy, Elsevier, vol. 243(C).
    2. Qian, Tong & Chen, Xingyu & Xin, Yanli & Tang, Wenhu & Wang, Lixiao, 2022. "Resilient decentralized optimization of chance constrained electricity-gas systems over lossy communication networks," Energy, Elsevier, vol. 239(PB).
    3. Javadi, Mohammad Sadegh & Esmaeel Nezhad, Ali & Jordehi, Ahmad Rezaee & Gough, Matthew & Santos, Sérgio F. & Catalão, João P.S., 2022. "Transactive energy framework in multi-carrier energy hubs: A fully decentralized model," Energy, Elsevier, vol. 238(PB).
    4. Chen, Binbin & Wu, Wenchuan & Guo, Qinglai & Sun, Hongbin, 2022. "An efficient optimal energy flow model for integrated energy systems based on energy circuit modeling in the frequency domain," Applied Energy, Elsevier, vol. 326(C).
    5. Sayed, Ahmed Rabee & Wang, Cheng & Chen, Sheng & Shang, Ce & Bi, Tianshu, 2021. "Distributionally robust day-ahead operation of power systems with two-stage gas contracting," Energy, Elsevier, vol. 231(C).
    6. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    7. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    8. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    9. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    10. Lin Wang & Yuping Xing, 2022. "Risk Assessment of a Coupled Natural Gas and Electricity Market Considering Dual Interactions: A System Dynamics Model," Energies, MDPI, vol. 16(1), pages 1-18, December.
    11. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    12. Kun Jin & Yevgeniy Vorobeychik & Mingyan Liu, 2021. "Multi-Scale Games: Representing and Solving Games on Networks with Group Structure," Papers 2101.08314, arXiv.org.
    13. Egerer, Jonas & Grimm, Veronika & Grübel, Julia & Zöttl, Gregor, 2022. "Long-run market equilibria in coupled energy sectors: A study of uniqueness," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1335-1354.
    14. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    15. Myungjin Kim & Li Wang & Yuyu Zhou, 2021. "Spatially Varying Coefficient Models with Sign Preservation of the Coefficient Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 367-386, September.
    16. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    17. Zhao, Yongning & Xu, Xiandong & Qadrdan, Meysam & Wu, Jianzhong, 2021. "Optimal operation of compressor units in gas networks to provide flexibility to power systems," Applied Energy, Elsevier, vol. 290(C).
    18. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).
    19. Schlund, David & Schönfisch, Max, 2021. "Analysing the Impact of a Renewable Hydrogen Quota on the European Electricity and Natural Gas Markets," EWI Working Papers 2021-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Dolgopolik, Maksim V., 2021. "The alternating direction method of multipliers for finding the distance between ellipsoids," Applied Mathematics and Computation, Elsevier, vol. 409(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.