IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipas0360544221021356.html
   My bibliography  Save this article

Experimental study of the wind turbine airfoil with the local flexibility at different locations for more energy output

Author

Listed:
  • Koca, Kemal
  • Genç, Mustafa Serdar
  • Bayır, Esra
  • Soğuksu, Fatma Kezban

Abstract

A passive flow control device with a local flexible membrane material over the suction surface was experimentally investigated with a smoke-wire experiment and time-dependent force measurement in this study. The experiments were performed on both the uncontrolled and the controlled FX 84-W-150 wind turbine airfoils applying the local flexible membrane at different locations first in the literature. The smoke-wire result for the uncontrolled airfoil indicated that a laminar separation bubble formed over the suction surface and the increasing incidence caused the short bubble at lower angles of attack to turn into the long bubble at moderate angles of attack by shifting upstream. After the experiment for the uncontrolled airfoil, six different locations of local flexibility were considered on the suction surface. All tests showed that applying the local flexibility especially at the leading edge ensured better aerodynamic performance. Additionally, it was observed that the lift coefficient was negatively affected when the length of local flexibility increased. As a result of these findings, employing the local flexibility between x/c = 0.2 and x/c = 0.4 over the suction surface was determined as the best optimum location and length. With employing this configuration, the laminar separation bubble was not only suppressed and eliminated but the fluctuations of the lift and the drag curves especially at moderate incidences were also decreased, resulting in increasing in aerodynamic performance as well as having less vibration and more stable on wind turbine airfoil. Apart from the studies regarding wind turbine airfoils with the local flexible material in the literature, our results bear witness that mounting this passive flow controller close to the leading edge and keeping it shorter was more influential in terms of the power output of wind turbine blades.

Suggested Citation

  • Koca, Kemal & Genç, Mustafa Serdar & Bayır, Esra & Soğuksu, Fatma Kezban, 2022. "Experimental study of the wind turbine airfoil with the local flexibility at different locations for more energy output," Energy, Elsevier, vol. 239(PA).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021356
    DOI: 10.1016/j.energy.2021.121887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221021356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chamorro, Leonardo P. & Arndt, R.E.A. & Sotiropoulos, F., 2013. "Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies," Renewable Energy, Elsevier, vol. 50(C), pages 1095-1105.
    2. Koca, Kemal & Genç, Mustafa Serdar & Açıkel, Halil Hakan & Çağdaş, Mücahit & Bodur, Tuna Murat, 2018. "Identification of flow phenomena over NACA 4412 wind turbine airfoil at low Reynolds numbers and role of laminar separation bubble on flow evolution," Energy, Elsevier, vol. 144(C), pages 750-764.
    3. Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
    4. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    5. Açıkel, Halil Hakan & Serdar Genç, Mustafa, 2018. "Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface," Energy, Elsevier, vol. 165(PA), pages 176-190.
    6. Huang, Yu-Fong & Gan, Xing-Jia & Chiueh, Pei-Te, 2017. "Life cycle assessment and net energy analysis of offshore wind power systems," Renewable Energy, Elsevier, vol. 102(PA), pages 98-106.
    7. MacPhee, David W. & Beyene, Asfaw, 2019. "Performance analysis of a small wind turbine equipped with flexible blades," Renewable Energy, Elsevier, vol. 132(C), pages 497-508.
    8. Xin-Kai Li & Wei Liu & Ting-Jun Zhang & Pei-Ming Wang & Xiao-Dong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control," Energies, MDPI, vol. 12(23), pages 1-19, December.
    9. Sedighi, Hamed & Akbarzadeh, Pooria & Salavatipour, Ali, 2020. "Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koca, Kemal & Genç, Mustafa Serdar & Ertürk, Sevde, 2022. "Impact of local flexible membrane on power efficiency stability at wind turbine blade," Renewable Energy, Elsevier, vol. 197(C), pages 1163-1173.
    2. Cihan Çiftci & Ayşe Erdoğan & Mustafa Serdar Genç, 2023. "Investigation of the Mechanical Behavior of a New Generation Wind Turbine Blade Technology," Energies, MDPI, vol. 16(4), pages 1-20, February.
    3. Keflemariam, Yisehak A. & Lee, Sang, 2023. "Control and dynamic analysis of a 10 MW floating wind turbine on a TetraSpar multi-body platform," Renewable Energy, Elsevier, vol. 217(C).
    4. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koca, Kemal & Genç, Mustafa Serdar & Ertürk, Sevde, 2022. "Impact of local flexible membrane on power efficiency stability at wind turbine blade," Renewable Energy, Elsevier, vol. 197(C), pages 1163-1173.
    2. Fan, Menghao & Sun, Zhaocheng & Dong, Xiangwei & Li, Zengliang, 2022. "Numerical and experimental investigation of bionic airfoils with leading-edge tubercles at a low-Re in considering stall delay," Renewable Energy, Elsevier, vol. 200(C), pages 154-168.
    3. Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
    4. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    5. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.
    6. Akhter, Md Zishan & Ali, Ahmed Riyadh & Jawahar, Hasan Kamliya & Omar, Farag Khalifa & Elnajjar, Emad, 2023. "Performance enhancement of small-scale wind turbine featuring morphing blades," Energy, Elsevier, vol. 278(C).
    7. Açıkel, Halil Hakan & Serdar Genç, Mustafa, 2018. "Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface," Energy, Elsevier, vol. 165(PA), pages 176-190.
    8. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2021. "High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers," Energy, Elsevier, vol. 225(C).
    9. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    10. Wang, Longjun & Alam, Md. Mahbub & Rehman, Shafiqur & Zhou, Yu, 2022. "Effects of blowing and suction jets on the aerodynamic performance of wind turbine airfoil," Renewable Energy, Elsevier, vol. 196(C), pages 52-64.
    11. Aktaş, Ahmet & Kırçiçek, Yağmur, 2020. "A novel optimal energy management strategy for offshore wind/marine current/battery/ultracapacitor hybrid renewable energy system," Energy, Elsevier, vol. 199(C).
    12. Zhong, Junwei & Li, Jingyin, 2020. "Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil," Energy, Elsevier, vol. 206(C).
    13. Sedighi, Hamed & Akbarzadeh, Pooria & Salavatipour, Ali, 2020. "Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation," Energy, Elsevier, vol. 195(C).
    14. Nakhchi, M.E. & Naung, S. Win & Dala, L. & Rahmati, M., 2022. "Direct numerical simulations of aerodynamic performance of wind turbine aerofoil by considering the blades active vibrations," Renewable Energy, Elsevier, vol. 191(C), pages 669-684.
    15. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    16. Shaotao Fan & Xiangxi Han & Youhong Tang & Yiwen Wang & Xiangshao Kong, 2022. "Shark Skin—An Inspiration for the Development of a Novel and Simple Biomimetic Turbulent Drag Reduction Topology," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    17. S. Arunvinthan & V.S. Raatan & S. Nadaraja Pillai & Amjad A. Pasha & M. M. Rahman & Khalid A. Juhany, 2021. "Aerodynamic Characteristics of Shark Scale-Based Vortex Generators upon Symmetrical Airfoil," Energies, MDPI, vol. 14(7), pages 1-22, March.
    18. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    19. De Luca Peña, Laura Vittoria & Taelman, Sue Ellen & Bas, Bilge & Staes, Jan & Mertens, Jan & Clavreul, Julie & Préat, Nils & Dewulf, Jo, 2024. "Monetized (socio-)environmental handprint and footprint of an offshore windfarm in the Belgian Continental Shelf: An assessment of local, regional and global impacts," Applied Energy, Elsevier, vol. 353(PA).
    20. Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pa:s0360544221021356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.