IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221023276.html
   My bibliography  Save this article

Transitional metal-doped aluminum fumarates for ultra-low heat driven adsorption cooling systems

Author

Listed:
  • Rupam, Tahmid Hasan
  • Palash, M.L.
  • Islam, Md Amirul
  • Saha, Bidyut Baran

Abstract

Solid-gas adsorption has drawn considerable attention utilizing low-grade waste heat and environment-friendly refrigerants for cooling, heating, and air-conditioning. However, low sorption capacity of the adsorbents is a long-standing challenge for achieving highly efficient adsorption heat pumps. This study aims to analyze and compare the performance of green synthesized transitional metal (10% Ni and 10% Co) doped aluminum fumarate metal-organic frameworks as adsorbent materials in an adsorption chiller where water is considered as the refrigerant. Water uptakes on these adsorbents were measured at 303 K, 323 K, and 343 K gravimetrically. It was found that both Ni and Co-doped samples showed higher equilibrium uptake when compared with the parent sample while the adsorption isotherm moved towards the lower pressure region. Additionally, adsorption cycles involving the pressure, temperature, and uptakes (P-T-q diagrams) were drawn to investigate their cyclic performances. The specific cooling effects were also calculated and compared among the associated adsorbent/adsorbate pairs having the adsorption, desorption, evaporator, and condenser temperatures considered as 303 K, 353 K, 288 K, and 308 K, respectively. Additional studies were conducted using the inverse gas chromatography technique to investigate the relation between the surface properties and the water adsorption isotherms.

Suggested Citation

  • Rupam, Tahmid Hasan & Palash, M.L. & Islam, Md Amirul & Saha, Bidyut Baran, 2022. "Transitional metal-doped aluminum fumarates for ultra-low heat driven adsorption cooling systems," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221023276
    DOI: 10.1016/j.energy.2021.122079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221023276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tu, Rang & Hwang, Yunho, 2020. "Reviews of atmospheric water harvesting technologies," Energy, Elsevier, vol. 201(C).
    2. M. R. Tchalala & P. M. Bhatt & K. N. Chappanda & S. R. Tavares & K. Adil & Y. Belmabkhout & A. Shkurenko & A. Cadiau & N. Heymans & G. Weireld & G. Maurin & K. N. Salama & M. Eddaoudi, 2019. "Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Kayal, Sibnath & Sun, Baichuan & Chakraborty, Anutosh, 2015. "Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks)," Energy, Elsevier, vol. 91(C), pages 772-781.
    4. Zu, Kan & Qin, Menghao, 2021. "Experimental and modeling investigation of water adsorption of hydrophilic carboxylate-based MOF for indoor moisture control," Energy, Elsevier, vol. 228(C).
    5. AL-Dadah, Raya & Mahmoud, Saad & Elsayed, Eman & Youssef, Peter & Al-Mousawi, Fadhel, 2020. "Metal-organic framework materials for adsorption heat pumps," Energy, Elsevier, vol. 190(C).
    6. Wang, J.Y. & Wang, R.Z. & Tu, Y.D. & Wang, L.W., 2018. "Universal scalable sorption-based atmosphere water harvesting," Energy, Elsevier, vol. 165(PA), pages 387-395.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Pokorny, Nikola & Shemelin, Viacheslav & Novotny, Jiri, 2022. "Experimental study and performance analysis of a mobile autonomous atmospheric water generator designed for arid climatic conditions," Energy, Elsevier, vol. 250(C).
    3. Zheng, Xu & Zhang, Yu & Wan, Tinghao & Chen, Kang, 2023. "Experimental study on the performance of a novel superabsorbent polymer and activated carbon composite coated heat exchangers," Energy, Elsevier, vol. 281(C).
    4. Entezari, A. & Wang, R.Z. & Zhao, S. & Mahdinia, E. & Wang, J.Y. & Tu, Y.D. & Huang, D.F., 2019. "Sustainable agriculture for water-stressed regions by air-water-energy management," Energy, Elsevier, vol. 181(C), pages 1121-1128.
    5. Zhang, Qiaoxin & Tu, Rang & Liu, Mengdan, 2023. "Performance analyses and optimization studies of desiccant wheel assisted atmospheric water harvesting system under global ambient conditions," Energy, Elsevier, vol. 283(C).
    6. Han, Bo & Chakraborty, Anutosh, 2024. "Recent advances in metal-organic frameworks for adsorption heat transformations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    7. Kwan, Trevor Hocksun & Shen, Yongting & Hu, Tianxiang & Pei, Gang, 2020. "The fuel cell and atmospheric water generator hybrid system for supplying grid-independent power and freshwater," Applied Energy, Elsevier, vol. 279(C).
    8. Stephan Peter & Matthias Schirmer & Philippe Lathan & Georg Stimpfl & Bashar Ibrahim, 2022. "Performance Analysis of a Solar-Powered Multi-Purpose Supply Container," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    9. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    10. Duan, Zhongdi & Wang, Jianhu & Yuan, Yuchao & Tang, Wenyong & Xue, Hongxiang, 2023. "Near-wall thermal regulation for cryogenic storage by adsorbent coating: Modelling and pore-scale investigation," Applied Energy, Elsevier, vol. 349(C).
    11. Shan, He & Poredoš, Primož & Zou, Hao & Lv, Haotian & Wang, Ruzhu, 2023. "Perspectives for urban microenvironment sustainability enabled by decentralized water-energy-food harvesting," Energy, Elsevier, vol. 282(C).
    12. Mohammed Sanjid Thavalengal & Muhammad Ahmad Jamil & Muhammad Mehroz & Ben Bin Xu & Haseeb Yaqoob & Muhammad Sultan & Nida Imtiaz & Muhammad Wakil Shahzad, 2023. "Progress and Prospects of Air Water Harvesting System for Remote Areas: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-27, March.
    13. Tamerlan Srymbetov & Albina Jetybayeva & Dinara Dikhanbayeva & Luis Rojas‐Solórzano, 2023. "Mapping non‐conventional atmospheric drinking‐water harvesting opportunities in Central Eurasia: The case of Kazakhstan," Natural Resources Forum, Blackwell Publishing, vol. 47(1), pages 87-113, February.
    14. Qingwei Shi & Yupeng Hu & Tiecheng Yan, 2023. "A Study on the Effect of Innovation-Driven Policies on Industrial Pollution Reduction: Evidence from 276 Cities in China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    15. Salehi, Ali Akbar & Ghannadi-Maragheh, Mohammad & Torab-Mostaedi, Meisam & Torkaman, Rezvan & Asadollahzadeh, Mehdi, 2020. "A review on the water-energy nexus for drinking water production from humid air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    16. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    17. Gordeeva, Larisa G. & Solovyeva, Marina V. & Sapienza, Alessio & Aristov, Yuri I., 2020. "Potable water extraction from the atmosphere: Potential of MOFs," Renewable Energy, Elsevier, vol. 148(C), pages 72-80.
    18. Zu, Kan & Qin, Menghao, 2022. "Optimization of the hygrothermal performance of novel metal-organic framework (MOF) based humidity pump: A CFD approach," Energy, Elsevier, vol. 259(C).
    19. Bahri Korbi, Fadia & Ben-Slimane, Karim & Triki, Dora, 2021. "How do international joint ventures build resilience to navigate institutional crisis? The case of a Tunisian-French IJV during the Arab-Spring," Journal of Business Research, Elsevier, vol. 129(C), pages 157-168.
    20. He Shan & Chunfeng Li & Zhihui Chen & Wenjun Ying & Primož Poredoš & Zhanyu Ye & Quanwen Pan & Jiayun Wang & Ruzhu Wang, 2022. "Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221023276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.