IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs036054422102020x.html
   My bibliography  Save this article

IDDES simulation of the performance and wake dynamics of the wind turbines under different turbulent inflow conditions

Author

Listed:
  • Chen, Guang
  • Li, Xiao-Bai
  • Liang, Xi-Feng

Abstract

This paper aims at investigating the effect of the inflow turbulence on the aerodynamics and the wake instabilities of the wind turbine. The improved delayed detached eddy simulation (IDDES) combined with the overset grid method is performed to model the NREL S826 airfoil wind turbine at design operating condition (λ=6.0). The mean loads of power coefficient (CP) and thrust coefficient (CT) show good agreement with existing experiments data. The normalized mean velocity U/Uref profile and normalized turbulent kinetic energy k/U2ref profile within the wake is also consistent with the experiments data, indicating a fairly accurate predictions of the wake turbulence. The detailed analysis of wake vortex structure, mean Reynold's stress distribution and PSD spectrum of turbulent kinetic energy are utilized to explore the effect of incoming turbulence on the wind turbine performance and the mechanism of the wake instability. The incoming turbulence and wind shear may promote the tip vortex instability and accelerate wake recovery, thus more attention should be paid to the design procedure and layout of wind farms.

Suggested Citation

  • Chen, Guang & Li, Xiao-Bai & Liang, Xi-Feng, 2022. "IDDES simulation of the performance and wake dynamics of the wind turbines under different turbulent inflow conditions," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s036054422102020x
    DOI: 10.1016/j.energy.2021.121772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422102020X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
    2. Leonardo P. Chamorro & Fernando Porté-Agel, 2011. "Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study," Energies, MDPI, vol. 4(11), pages 1-21, November.
    3. Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
    4. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    5. Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, Elsevier, vol. 90(C), pages 204-228.
    6. Lei, Hang & Zhou, Dai & Lu, Jiabao & Chen, Caiyong & Han, Zhaolong & Bao, Yan, 2017. "The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine," Energy, Elsevier, vol. 119(C), pages 369-383.
    7. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Wenyu & E, Jiaqiang & Leng, Erwei & Zhang, Feng & Chen, Jingwei & Ma, Yinjie, 2023. "Investigation on harvesting characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 263(PE).
    2. Ghigo, Alberto & Faraggiana, Emilio & Giorgi, Giuseppe & Mattiazzo, Giuliana & Bracco, Giovanni, 2024. "Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    3. Zhu, Hongtao & Gao, Xueping & Liu, Yinzhu & Liu, Shuai, 2023. "Numerical and experimental assessment of the water discharge segment in a pumped-storage power station," Energy, Elsevier, vol. 265(C).
    4. Xiaohao Liu & Zhaobin Li & Xiaolei Yang & Duo Xu & Seokkoo Kang & Ali Khosronejad, 2022. "Large-Eddy Simulation of Wakes of Waked Wind Turbines," Energies, MDPI, vol. 15(8), pages 1-26, April.
    5. Kuang, Limin & Katsuchi, Hiroshi & Zhou, Dai & Chen, Yaoran & Han, Zhaolong & Zhang, Kai & Wang, Jiaqi & Bao, Yan & Cao, Yong & Liu, Yijie, 2023. "Strategy for mitigating wake interference between offshore vertical-axis wind turbines: Evaluation of vertically staggered arrangement," Applied Energy, Elsevier, vol. 351(C).
    6. Zareian, Mohammad & Rasam, Amin & Hashemi Tari, Pooyan, 2024. "A detached-eddy simulation study on assessing the impact of extreme wind conditions on load and wake characteristics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 299(C).
    7. Zhang, Zhihao & Yang, Haoran & Zhao, Yongsheng & Han, Zhaolong & Zhou, Dai & Zhang, Jianhua & Tu, Jiahuang & Chen, Mingsheng, 2024. "A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect," Energy, Elsevier, vol. 287(C).
    8. Hu, Wenyu & E, Jiaqiang & Han, Dandan & Feng, Changling & Luo, Xiaoyu, 2023. "Investigation on distribution characteristics of convective wind energy from vehicle driving on multi-lane highway," Energy, Elsevier, vol. 271(C).
    9. Xiaoling Liang & Zheng Li & Xingxing Han & Shifeng Fu & Weijun Zhu & Tianmei Pu & Zhenye Sun & Hua Yang & Wenzhong Shen, 2024. "Study on Aerodynamic Performance and Wake Characteristics of a Floating Offshore Wind Turbine in Wind–Wave Coupling Field," Sustainability, MDPI, vol. 16(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Guang & Liang, Xi-Feng & Li, Xiao-Bai, 2022. "Modelling of wake dynamics and instabilities of a floating horizontal-axis wind turbine under surge motion," Energy, Elsevier, vol. 239(PB).
    2. Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
    3. Fang, Yuan & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng & Yang, He, 2020. "Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion," Energy, Elsevier, vol. 192(C).
    4. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
    5. Lei, Hang & Su, Jie & Bao, Yan & Chen, Yaoran & Han, Zhaolong & Zhou, Dai, 2019. "Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms," Energy, Elsevier, vol. 166(C), pages 471-489.
    6. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
    7. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Duan, Lei & Sun, Qinghong & He, Zanyang & Li, Gen, 2022. "Wake topology and energy recovery in floating horizontal-axis wind turbines with harmonic surge motion," Energy, Elsevier, vol. 260(C).
    9. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics," Energies, MDPI, vol. 10(7), pages 1-19, July.
    10. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    11. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    12. Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
    13. Sun, Haiying & Yang, Hongxing, 2020. "Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model," Renewable Energy, Elsevier, vol. 147(P1), pages 192-203.
    14. Mingqiu Liu & Zhichang Liang & Haixiao Liu, 2022. "Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation," Energies, MDPI, vol. 15(6), pages 1-19, March.
    15. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    16. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
    17. Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
    18. Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
    19. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    20. Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s036054422102020x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.