IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v237y2021ics0360544221018168.html
   My bibliography  Save this article

Development of a personalized thermal comfort driven controller for HVAC systems

Author

Listed:
  • Turhan, Cihan
  • Simani, Silvio
  • Gokcen Akkurt, Gulden

Abstract

Increasing thermal comfort and reducing energy consumption are two main objectives of advanced HVAC control systems. In this study, a thermal comfort driven control (PTC-DC) algorithm was developed to improve HVAC control systems with no need of retrofitting HVAC system components. A case building located in Izmir Institute of Technology Campus-Izmir-Turkey was selected to test the developed system. First, wireless sensors were installed to the building and a mobile application was developed to monitor/collect temperature, relative humidity and thermal comfort data of an occupant. Then, the PTC-DC algorithm was developed to meet the highest occupant thermal comfort as well as saving energy. The prototypes of the controller were tested on the case building from July 3rd, 2017 to November 1st, 2018 and compared with a conventional PID controller. The results showed that the developed control algorithm and conventional controller satisfy neutral thermal comfort for 92 % and 6 % of total measurement days, respectively. From energy consumption point of view, the PTC-DC decreased energy consumption by 13.2 % compared to the conventional controller. Consequently, the PTC-DC differs from other works in the literature that the prototype of PTC-DC can be easily deployed in real environments. Moreover, the PTC-DC is low-cost and user-friendly.

Suggested Citation

  • Turhan, Cihan & Simani, Silvio & Gokcen Akkurt, Gulden, 2021. "Development of a personalized thermal comfort driven controller for HVAC systems," Energy, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221018168
    DOI: 10.1016/j.energy.2021.121568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221018168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Runming & Liu, Jing & Li, Baizhan, 2010. "Occupants' adaptive responses and perception of thermal environment in naturally conditioned university classrooms," Applied Energy, Elsevier, vol. 87(3), pages 1015-1022, March.
    2. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    3. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    4. Ghahramani, Ali & Castro, Guillermo & Karvigh, Simin Ahmadi & Becerik-Gerber, Burcin, 2018. "Towards unsupervised learning of thermal comfort using infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 41-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
    2. Lee, Minjung & Ham, Jeonggyun & Lee, Jeong-Won & Cho, Honghyun, 2023. "Analysis of thermal comfort, energy consumption, and CO2 reduction of indoor space according to the type of local heating under winter rest conditions," Energy, Elsevier, vol. 268(C).
    3. Barone, G. & Buonomano, A. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Russo, G., 2023. "A new thermal comfort model based on physiological parameters for the smart design and control of energy-efficient HVAC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    5. Huang, He & Wang, Honglei & Hu, Yu-Jie & Li, Chengjiang & Wang, Xiaolin, 2022. "Optimal plan for energy conservation and CO2 emissions reduction of public buildings considering users' behavior: Case of China," Energy, Elsevier, vol. 261(PA).
    6. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).
    7. Jie Yang & Zhimeng Dong & Huihan Yang & Yanyan Liu & Yunjie Wang & Fujiang Chen & Haifei Chen, 2022. "Numerical and Experimental Study on Thermal Comfort of Human Body by Split-Fiber Air Conditioner," Energies, MDPI, vol. 15(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    3. Ning, Haoran & Wang, Zhaojun & Ji, Yuchen, 2016. "Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability?," Applied Energy, Elsevier, vol. 183(C), pages 22-30.
    4. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    5. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    6. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    7. Nutkiewicz, Alex & Mastrucci, Alessio & Rao, Narasimha D. & Jain, Rishee K., 2022. "Cool roofs can mitigate cooling energy demand for informal settlement dwellers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Ebrahim Morady & Madjid Soltani & Farshad Moradi Kashkooli & Masoud Ziabasharhagh & Armughan Al-Haq & Jatin Nathwani, 2022. "Improving Energy Efficiency by Utilizing Wetted Cellulose Pads in Passive Cooling Systems," Energies, MDPI, vol. 15(1), pages 1-17, January.
    9. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    10. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    11. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    12. Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.
    13. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    14. Shady Attia, 2020. "Spatial and Behavioral Thermal Adaptation in Net Zero Energy Buildings: An Exploratory Investigation," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    15. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    16. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    17. Magnouréwa Josiane Tossim & Parfait Altolnan Tombar & Sinko Banakinao & Célestin Adeito Mavunda & Tchakouni Sondou & Cyprien Coffi Aholou & Yawovi Mawuénya Xolali Dany Ayité, 2024. "Analysis of the Choice of Cement in Construction and Its Impact on Comfort in Togo," Sustainability, MDPI, vol. 16(17), pages 1-19, August.
    18. Sun, Xiaoqin & Medina, Mario A. & Lee, Kyoung Ok & Jin, Xing, 2018. "Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management," Energy, Elsevier, vol. 163(C), pages 383-391.
    19. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    20. James Ogundiran & Ehsan Asadi & Manuel Gameiro da Silva, 2024. "A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings," Sustainability, MDPI, vol. 16(9), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:237:y:2021:i:c:s0360544221018168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.