IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221014055.html
   My bibliography  Save this article

A novel peak load shaving algorithm for isolated microgrid using hybrid PV-BESS system

Author

Listed:
  • Rana, Md Masud
  • Romlie, Mohd Fakhizan
  • Abdullah, Mohd Faris
  • Uddin, Moslem
  • Sarkar, Md Rasel

Abstract

A novel peak load shaving algorithm has been proposed in this study for peak shaving application in hybrid PV-BESS connected Isolated Microgrid (IMG) system. This algorithm will help an IMG system to operate its generation systems optimally and economically along with PV generation unit. An IMG model has been developed in MATLAB/Simulink environment with actual load data, conventional Gas Turbine Generator (GTG), Photovoltaic (PV) generation system and Battery Energy Storage System (BESS). The proposed algorithm has been tested with the designed IMG model. To evaluate the effectiveness of the algorithm, simulation case studies have been conducted with actual load data and actual PV generation data. The simulation results demonstrate that the algorithm can minimize the limitations of the existing methods and it can use the PV generation system effectively. Peak shaving service can be found from this algorithm as a simple and forcible way. A comparative analysis has been conducted of the proposed algorithm with the conventional methods. The comparison results can easily reflect that the proposed algorithm can ensure the optimal use of PV generation system and can serve peak shaving service effectively. It can also ensure an economic and environment friendly system where the existing algorithms are limited to serve these. The proposed algorithm can mitigate the available power issues for hybrid PV-BESS connected system and it can also minimize the operating cost by dispatching the generation units optimally.

Suggested Citation

  • Rana, Md Masud & Romlie, Mohd Fakhizan & Abdullah, Mohd Faris & Uddin, Moslem & Sarkar, Md Rasel, 2021. "A novel peak load shaving algorithm for isolated microgrid using hybrid PV-BESS system," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014055
    DOI: 10.1016/j.energy.2021.121157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yan & Fu, Lijun & Zhu, Wanlu & Bao, Xianqiang & Liu, Cang, 2018. "Robust model predictive control for optimal energy management of island microgrids with uncertainties," Energy, Elsevier, vol. 164(C), pages 1229-1241.
    2. Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír & Mohd Yunus, Mohamad Nur Salam & Syed Mohd Zaki, Syed Amarul Adli, 2018. "Peak-off-peak load shifting for optimal storage sizing in hybrid power systems using Power Pinch Analysis considering energy losses," Energy, Elsevier, vol. 156(C), pages 299-310.
    3. Jouvet, Pierre-André & Solier, Boris, 2013. "An overview of CO2 cost pass-through to electricity prices in Europe," Energy Policy, Elsevier, vol. 61(C), pages 1370-1376.
    4. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    5. Mahani, Khashayar & Farzan, Farbod & Jafari, Mohsen A., 2017. "Network-aware approach for energy storage planning and control in the network with high penetration of renewables," Applied Energy, Elsevier, vol. 195(C), pages 974-990.
    6. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2015. "Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving," Applied Energy, Elsevier, vol. 147(C), pages 246-257.
    7. repec:dau:papers:123456789/7761 is not listed on IDEAS
    8. Uddin, Moslem & Romlie, M.F. & Abdullah, M.F. & Tan, ChiaKwang & Shafiullah, GM & Bakar, A.H.A., 2020. "A novel peak shaving algorithm for islanded microgrid using battery energy storage system," Energy, Elsevier, vol. 196(C).
    9. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonginkosi A. Thango & Pitshou N. Bokoro, 2022. "Battery Energy Storage for Photovoltaic Application in South Africa: A Review," Energies, MDPI, vol. 15(16), pages 1-21, August.
    2. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    4. Castillejo-Cuberos, A. & Cardemil, J.M. & Escobar, R., 2023. "Techno-economic assessment of photovoltaic plants considering high temporal resolution and non-linear dynamics of battery storage," Applied Energy, Elsevier, vol. 334(C).
    5. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Rezaee Jordehi, Ahmad & Jurado, Francisco, 2022. "A Stochastic-IGDT model for energy management in isolated microgrids considering failures and demand response," Applied Energy, Elsevier, vol. 317(C).
    6. Francisco Durán & Wilson Pavón & Luis Ismael Minchala, 2024. "Forecast-Based Energy Management for Optimal Energy Dispatch in a Microgrid," Energies, MDPI, vol. 17(2), pages 1-21, January.
    7. Hongwei Li & Qing Xu & Shitao Wang & Huihui Song, 2022. "Peak Shaving Methods of Distributed Generation Clusters Using Dynamic Evaluation and Self-Renewal Mechanism," Energies, MDPI, vol. 15(19), pages 1-17, September.
    8. Lin, Jin & Dong, Jun & Dou, Xihao & Liu, Yao & Yang, Peiwen & Ma, Tongtao, 2022. "Psychological insights for incentive-based demand response incorporating battery energy storage systems: A two-loop Stackelberg game approach," Energy, Elsevier, vol. 239(PC).
    9. Ouyang, Tiancheng & Zhang, Mingliang & Qin, Peijia & Tan, Xianlin, 2024. "Flow battery energy storage system for microgrid peak shaving based on predictive control algorithm," Applied Energy, Elsevier, vol. 356(C).
    10. Md Masud Rana & Akhlaqur Rahman & Moslem Uddin & Md Rasel Sarkar & SK. A. Shezan & C M F S Reza & Md. Fatin Ishraque & Mohammad Belayet Hossain, 2022. "Efficient Energy Distribution for Smart Household Applications," Energies, MDPI, vol. 15(6), pages 1-19, March.
    11. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    2. Uddin, Moslem & Romlie, M.F. & Abdullah, M.F. & Tan, ChiaKwang & Shafiullah, GM & Bakar, A.H.A., 2020. "A novel peak shaving algorithm for islanded microgrid using battery energy storage system," Energy, Elsevier, vol. 196(C).
    3. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    5. Bhagya Nathali Silva & Murad Khan & Kijun Han, 2020. "Futuristic Sustainable Energy Management in Smart Environments: A Review of Peak Load Shaving and Demand Response Strategies, Challenges, and Opportunities," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    6. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Uddin, Moslem & Romlie, Mohd Fakhizan & Abdullah, Mohd Faris & Abd Halim, Syahirah & Abu Bakar, Ab Halim & Chia Kwang, Tan, 2018. "A review on peak load shaving strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3323-3332.
    8. Nareg Basmadjian & Sean Yun & Zekai Hong, 2023. "Optimization of Micro Gas Turbine Based Hybrid Systems for Remote Off-grid Communities," Energy & Environment, , vol. 34(4), pages 1060-1080, June.
    9. Mominul Islam, Shah Mohammad & Salema, Arshad Adam & Saleheen, Mohammed Zeehan & Lim, Joanne Mun Yee, 2022. "The influence of shifting the electric bus charging routine on the techno-economic performance of a solar-powered bus depot," Energy, Elsevier, vol. 239(PD).
    10. Park, Hojeong & Hong, Won Kyung, 2014. "Korea׳s emission trading scheme and policy design issues to achieve market-efficiency and abatement targets," Energy Policy, Elsevier, vol. 75(C), pages 73-83.
    11. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    12. Bowei Guo & Giorgio Castagneto Gissey, 2019. "Cost Pass-through in the British Wholesale Electricity Market: Implications of Brexit and the ETS reform," Working Papers EPRG1937, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Sardi, Junainah & Mithulananthan, N. & Hung, Duong Quoc, 2017. "Strategic allocation of community energy storage in a residential system with rooftop PV units," Applied Energy, Elsevier, vol. 206(C), pages 159-171.
    14. Yurter, Gulin & Nadar, Emre & Kocaman, Ayse Selin, 2024. "The impact of pumped hydro energy storage configurations on investment planning of hybrid systems with renewables," Renewable Energy, Elsevier, vol. 222(C).
    15. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    16. Fadi Kahwash & Basel Barakat & Ahmad Taha & Qammer H. Abbasi & Muhammad Ali Imran, 2021. "Optimising Electrical Power Supply Sustainability Using a Grid-Connected Hybrid Renewable Energy System—An NHS Hospital Case Study," Energies, MDPI, vol. 14(21), pages 1-23, October.
    17. Peixiao Fan & Jia Hu & Song Ke & Yuxin Wen & Shaobo Yang & Jun Yang, 2022. "A Frequency–Pressure Cooperative Control Strategy of Multi-Microgrid with an Electric–Gas System Based on MADDPG," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    18. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    19. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    20. Ahmed M. Hussien & Jonghoon Kim & Abdulaziz Alkuhayli & Mohammed Alharbi & Hany M. Hasanien & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado, 2022. "Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation," Sustainability, MDPI, vol. 14(22), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.