IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics036054422101238x.html
   My bibliography  Save this article

A new drying approach deploying solid-solid phase change material: A numerical study

Author

Listed:
  • Nejad, Alireza Mahdavi

Abstract

Recently, phase change materials are emerging in thermal drying technology. This study offers a new approach in thermal drying of a moist paper sheet deploying solid-solid phase change material, tentatively as an alternative to solid-liquid micro-encapsulated PCMs uniformly dispersed inside the void part of porous sheet. In contrast to SL-MEPCM scenario, SS-PCM is fabricated in solid matrix of porous medium, remaining the sheet porosity intact. Additionally, comparing to its SL-MEPCM counterpart, any costly PCM encapsulation process or change in the design of headbox of commercial paper machine is avoided. As well, volume change during phase transition is negligible. This configuration is particularly ideal for drying applications where a low porosity, initially highly moist sheet is to be dried. A numerical experiment is carried out to investigate the dewatering behavior of SS-PCM fabricated paper in a drying process. A real shape-stabilized polymeric SS-PCM is used in this study. A pattern search optimization technique is employed to minimize the target moisture content. This study shows SS-PCM primarily becomes effective in last stage of drying where it internally releases the heat gained in previous stages. The numerical results indicate the moisture removal is enhanced by approximately 29% utilizing SS-PCM. The effect of SS-PCM volume percentage and particularly infrared emitters are studied, as well. It is observed that SS-PCM equipped paper does not perform effectively in drying sectors where IR emitters are retrofitted. Eventually, a comparative study is performed to fairly compare the thermal performance of SL-MEPCM and SS-PCM in paper drying.

Suggested Citation

  • Nejad, Alireza Mahdavi, 2021. "A new drying approach deploying solid-solid phase change material: A numerical study," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s036054422101238x
    DOI: 10.1016/j.energy.2021.120990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101238X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenisarin, Murat M. & Kenisarina, Kamola M., 2012. "Form-stable phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1999-2040.
    2. Chen, Changzhong & Liu, Wenmin & Wang, Hongwei & Peng, Kelin, 2015. "Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage," Applied Energy, Elsevier, vol. 152(C), pages 198-206.
    3. Laurijssen, Jobien & De Gram, Frans J. & Worrell, Ernst & Faaij, Andre, 2010. "Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry," Energy, Elsevier, vol. 35(9), pages 3738-3750.
    4. Lu, D.F. & Di, Y.Y. & He, D.H., 2013. "Crystal structures and thermodynamic properties of phase change materials (1-CnH2n+1NH3)2CdCl4(s) (n = 15 and 16)," Renewable Energy, Elsevier, vol. 50(C), pages 498-505.
    5. Chen, Xiaobin & Man, Yi & Zheng, Qifu & Hu, Yusha & Li, Jigeng & Hong, Mengna, 2019. "Industrial verification of energy saving for the single-tier cylinder based paper drying process," Energy, Elsevier, vol. 170(C), pages 261-272.
    6. Zeng, Zhiqiang & Hong, Mengna & Li, Jigeng & Man, Yi & Liu, Huanbin & Li, Zeeman & Zhang, Huanhuan, 2018. "Integrating process optimization with energy-efficiency scheduling to save energy for paper mills," Applied Energy, Elsevier, vol. 225(C), pages 542-558.
    7. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chengjie & Chen, Yifu & Zhang, Xuefeng & Mozafari, Ghazaleh & Fang, Zhuangdong & Cao, Yankai & Li, Changyou, 2022. "Exergy analysis and optimisation of an industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Reczulski & Włodzimierz Szewczyk & Michał Kuczkowski, 2023. "Possibilities of Reducing the Heat Energy Consumption in a Tissue Paper Machine—Case Study," Energies, MDPI, vol. 16(9), pages 1-15, April.
    2. Yang, Haiyue & Wang, Yazhou & Yu, Qianqian & Cao, Guoliang & Yang, Rue & Ke, Jiaona & Di, Xin & Liu, Feng & Zhang, Wenbo & Wang, Chengyu, 2018. "Composite phase change materials with good reversible thermochromic ability in delignified wood substrate for thermal energy storage," Applied Energy, Elsevier, vol. 212(C), pages 455-464.
    3. Evan Eduard Susanto & Agus Saptoro & Perumal Kumar & Angnes Ngieng Tze Tiong & Aditya Putranto & Suherman Suherman, 2024. "7E + Q analysis: a new multi-dimensional assessment tool of solar dryer for food and agricultural products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16363-16385, July.
    4. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    5. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    6. Chen, Xiaobin & Man, Yi & Zheng, Qifu & Hu, Yusha & Li, Jigeng & Hong, Mengna, 2019. "Industrial verification of energy saving for the single-tier cylinder based paper drying process," Energy, Elsevier, vol. 170(C), pages 261-272.
    7. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    8. Henríquez, Mauro & Guerreiro, Luis & Fernández, Ángel G. & Fuentealba, Edward, 2020. "Lithium nitrate purity influence assessment in ternary molten salts as thermal energy storage material for CSP plants," Renewable Energy, Elsevier, vol. 149(C), pages 940-950.
    9. Darzi, Mohammad Ebrahimnejad & Golestaneh, Seyyed Iman & Kamali, Marziyeh & Karimi, Gholamreza, 2019. "Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder," Renewable Energy, Elsevier, vol. 135(C), pages 719-728.
    10. Luis Miguel Calvo & Rosario Domingo, 2017. "CO 2 Emissions Reduction and Energy Efficiency Improvements in Paper Making Drying Process Control by Sensors," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    11. Angelo Del Giudice & Andrea Acampora & Enrico Santangelo & Luigi Pari & Simone Bergonzoli & Ettore Guerriero & Francesco Petracchini & Marco Torre & Valerio Paolini & Francesco Gallucci, 2019. "Wood Chip Drying through the Using of a Mobile Rotary Dryer," Energies, MDPI, vol. 12(9), pages 1-16, April.
    12. Chen, Hua-Wei & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2012. "The case study of energy flow analysis and strategy in pulp and paper industry," Energy Policy, Elsevier, vol. 43(C), pages 448-455.
    13. Tang, Jia & Yang, Mu & Yu, Fang & Chen, Xingyu & Tan, Li & Wang, Ge, 2017. "1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage," Applied Energy, Elsevier, vol. 187(C), pages 514-522.
    14. Panda, Debashish & Ramteke, Manojkumar, 2019. "Preventive crude oil scheduling under demand uncertainty using structure adapted genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 68-82.
    15. Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang & Ramirez Camargo, Luis, 2021. "Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications," Energy, Elsevier, vol. 215(PA).
    16. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "Adaptability research on phase change materials based technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 145-158.
    17. Özge Çepelioğullar Mutlu & Daniel Büchner & Steffi Theurich & Thomas Zeng, 2021. "Combined Use of Solar and Biomass Energy for Sustainable and Cost-Effective Low-Temperature Drying of Food Processing Residues on Industrial-Scale," Energies, MDPI, vol. 14(3), pages 1-22, January.
    18. Chen, Changzhong & Chen, Rong & Zhao, Tangyuan & Wang, Linge, 2022. "A comparative study of linear polyurea and crosslinked polyurea as supports to stabilize polyethylene glycol for thermal energy storage," Renewable Energy, Elsevier, vol. 183(C), pages 535-547.
    19. Caglayan, Hasan & Caliskan, Hakan, 2017. "Sustainability assessment of heat exchanger units for spray dryers," Energy, Elsevier, vol. 124(C), pages 741-751.
    20. Giuntini, Lorenzo & Lamioni, Rachele & Linari, Luca & Saccomano, Pietro & Mainardi, Davide & Tognotti, Leonardo & Galletti, Chiara, 2022. "Decarbonization of a tissue paper plant: Advanced numerical simulations to assess the replacement of fossil fuels with a biomass-derived syngas," Renewable Energy, Elsevier, vol. 198(C), pages 884-893.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s036054422101238x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.