IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i9p3738-3750.html
   My bibliography  Save this article

Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry

Author

Listed:
  • Laurijssen, Jobien
  • De Gram, Frans J.
  • Worrell, Ernst
  • Faaij, Andre

Abstract

The paper industry is, with about 6% of the total worldwide industrial energy use, an energy-intensive industry. The drying section is with approximately 50% the largest energy consumer in a paper mill, energy use in this section is mainly heat use. Several options to decrease heat use in conventional multi-cylinder drying sections are investigated, calculating the effect on energy use. Optimization measures include a) decreasing the amount of water evaporation by applying additives in higher consistencies and by lowering the water viscosity, b) decreasing the heat use of water evaporation by increasing the dew point temperature of the dryer and c) increasing the amount of heat recovery by using exhaust air to not only pre-heat the incoming air but also to increase process water temperatures. These could all be achieved by retrofitting and/or choosing different processing conditions in existing factories. The combined thermal heat saving potential due to the optimization actions is 1.3GJh/t paper (or 32% of the drying section’s heat use) as compared to the reference situation.

Suggested Citation

  • Laurijssen, Jobien & De Gram, Frans J. & Worrell, Ernst & Faaij, Andre, 2010. "Optimizing the energy efficiency of conventional multi-cylinder dryers in the paper industry," Energy, Elsevier, vol. 35(9), pages 3738-3750.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3738-3750
    DOI: 10.1016/j.energy.2010.05.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210002938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.05.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Dijk, Michiel & Szirmai, Adam, 2006. "Industrial Policy and Technology Diffusion: Evidence from Paper Making Machinery in Indonesia," World Development, Elsevier, vol. 34(12), pages 2137-2152, December.
    2. De Beer, Jeroen & Worrell, Ernst & Blok, Kornelis, 1998. "Long-term energy-efficiency improvements in the paper and board industry," Energy, Elsevier, vol. 23(1), pages 21-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pusnik, M. & Al-Mansour, F. & Sucic, B. & Cesen, M., 2017. "Trends and prospects of energy efficiency development in Slovenian industry," Energy, Elsevier, vol. 136(C), pages 52-62.
    2. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Caglayan, Hasan & Caliskan, Hakan, 2017. "Sustainability assessment of heat exchanger units for spray dryers," Energy, Elsevier, vol. 124(C), pages 741-751.
    4. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    5. Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R. & Tarighaleslami, Amir H., 2015. "Thermo-economic optimisation of industrial milk spray dryer exhaust to inlet air heat recovery," Energy, Elsevier, vol. 90(P1), pages 95-104.
    6. Luis Miguel Calvo & Rosario Domingo, 2017. "CO 2 Emissions Reduction and Energy Efficiency Improvements in Paper Making Drying Process Control by Sensors," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    7. Gradov, Dmitry Vladimirovich & Yusuf, Yusuf Oluwatoki & Ohjainen, Jussi & Suuronen, Jarkko & Eskola, Roope & Roininen, Lassi & Koiranen, Tuomas, 2022. "Modelling of a continuous veneer drying unit of industrial scale and model-based ANOVA of the energy efficiency," Energy, Elsevier, vol. 244(PA).
    8. Chen, Hua-Wei & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2012. "The case study of energy flow analysis and strategy in pulp and paper industry," Energy Policy, Elsevier, vol. 43(C), pages 448-455.
    9. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    10. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    11. Nejad, Alireza Mahdavi, 2021. "A new drying approach deploying solid-solid phase change material: A numerical study," Energy, Elsevier, vol. 232(C).
    12. Chen, Xiaobin & Man, Yi & Zheng, Qifu & Hu, Yusha & Li, Jigeng & Hong, Mengna, 2019. "Industrial verification of energy saving for the single-tier cylinder based paper drying process," Energy, Elsevier, vol. 170(C), pages 261-272.
    13. Di Marco, Paolo & Frigo, Stefano & Gabbrielli, Roberto & Pecchia, Stefano, 2016. "Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper," Energy, Elsevier, vol. 114(C), pages 201-213.
    14. Mariusz Reczulski & Włodzimierz Szewczyk & Michał Kuczkowski, 2023. "Possibilities of Reducing the Heat Energy Consumption in a Tissue Paper Machine—Case Study," Energies, MDPI, vol. 16(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramani, Shyama V. & Urias, Eduardo, 2018. "When access to drugs meets catch-up: Insights from the use of CL threats to improve access to ARV drugs in Brazil," Research Policy, Elsevier, vol. 47(8), pages 1538-1552.
    2. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    3. Guilherme Fracaro & Esa Vakkilainen & Marcelo Hamaguchi & Samuel Nelson Melegari de Souza, 2012. "Energy Efficiency in the Brazilian Pulp and Paper Industry," Energies, MDPI, vol. 5(9), pages 1-23, September.
    4. Julien Berthoumieu, 2015. "Technology Diffusion via Patent Collaborations: The Case of European Integration," Working Papers hal-01224761, HAL.
    5. Miner, R & Upton, B, 2002. "Methods for estimating greenhouse gas emissions from lime kilns at kraft pulp mills," Energy, Elsevier, vol. 27(8), pages 729-738.
    6. Ciccarelli, Carlo & Nuvolari, Alessandro, 2015. "Technical Change, Non-Tariff Barriers, and the Development of the Italian Locomotive Industry, 1850–1913," The Journal of Economic History, Cambridge University Press, vol. 75(3), pages 860-888, September.
    7. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    8. Dénarié, A. & Muscherà, M. & Calderoni, M. & Motta, M., 2019. "Industrial excess heat recovery in district heating: Data assessment methodology and application to a real case study in Milano, Italy," Energy, Elsevier, vol. 166(C), pages 170-182.
    9. Brueckner, Sarah & Miró, Laia & Cabeza, Luisa F. & Pehnt, Martin & Laevemann, Eberhard, 2014. "Methods to estimate the industrial waste heat potential of regions – A categorization and literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 164-171.
    10. Szirmai, Adam & Van Dijk, Michiel, 2007. "The Micro-Dynamics of Catch Up in Indonesian Paper Manufacturing: An International Comparison of Plant-Level Performance," MERIT Working Papers 2007-010, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    11. Carlo Ciccarelli & Alessandro Nuvolari, 2014. "Technical Change, Non-Tariff Trade Barriers and the Development of the Italian Locomotives Industry, 1850-1913," CEIS Research Paper 305, Tor Vergata University, CEIS, revised 07 Feb 2014.
    12. Changsheng Li & Lei Zhu & Tobias Fleiter, 2014. "Energy Efficiency Potentials in the Chlor-Alkali Sector — A Case Study of Shandong Province in China," Energy & Environment, , vol. 25(3-4), pages 661-686, April.
    13. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    14. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    15. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    16. McKenna, R.C. & Norman, J.B., 2010. "Spatial modelling of industrial heat loads and recovery potentials in the UK," Energy Policy, Elsevier, vol. 38(10), pages 5878-5891, October.
    17. Nystrom, Ingrid & Cornland, Deborah W., 2003. "Strategic choices: Swedish climate intervention policies and the forest industry's role in reducing CO2 emissions," Energy Policy, Elsevier, vol. 31(10), pages 937-950, August.
    18. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    19. Hayashi, Daisuke & Krey, Matthias, 2007. "Assessment of clean development mechanism potential of large-scale energy efficiency measures in heavy industries," Energy, Elsevier, vol. 32(10), pages 1917-1931.
    20. Michiel Van Dijk & Adam Szirmai, 2006. "Technical efficiency and embodied technical change in the Indonesian pulp and paper industry," Journal of International Development, John Wiley & Sons, Ltd., vol. 18(2), pages 163-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:9:p:3738-3750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.