IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v231y2021ics0360544221011646.html
   My bibliography  Save this article

Low-temperature waste heat enabling abandoning coal in Espoo district heating system

Author

Listed:
  • Hiltunen, Pauli
  • Syri, Sanna

Abstract

Espoo has set a goal to abandon the use of coal in its district heating system by the year 2025. The local district heating operator is producing a major share of Espoo's heat demand with combined heat and power units, but a large share of that thermal capacity will be closed by 2025. The plan is to replace the closed down capacity with renewable fuels, heat pumps and waste heat utilisation. The goal of this paper is to simulate the impacts of these emission reductive acts on the production costs and CO2 emissions of the system. The possibility of utilising waste heat from data centres in the district heating system is evaluated. The results show that abandoning coal in the city's heating system leads to a significant reduction of CO2 emissions with a small increase of annual production costs. Waste heat enables emission reductions even further, and the increase of production costs can be prevented.

Suggested Citation

  • Hiltunen, Pauli & Syri, Sanna, 2021. "Low-temperature waste heat enabling abandoning coal in Espoo district heating system," Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011646
    DOI: 10.1016/j.energy.2021.120916
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221011646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wahlroos, Mikko & Pärssinen, Matti & Rinne, Samuli & Syri, Sanna & Manner, Jukka, 2018. "Future views on waste heat utilization – Case of data centers in Northern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1749-1764.
    2. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    3. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
    4. Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.
    5. Volkova, Anna & Mašatin, Vladislav & Siirde, Andres, 2018. "Methodology for evaluating the transition process dynamics towards 4th generation district heating networks," Energy, Elsevier, vol. 150(C), pages 253-261.
    6. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    7. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    8. Mathiesen, Brian Vad & Lund, Henrik & Connolly, David, 2012. "Limiting biomass consumption for heating in 100% renewable energy systems," Energy, Elsevier, vol. 48(1), pages 160-168.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    10. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    11. Khosravi, A. & Olkkonen, V. & Farsaei, A. & Syri, S., 2020. "Replacing hard coal with wind and nuclear power in Finland- impacts on electricity and district heating markets," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vytautas Bocullo & Linas Martišauskas & Ramūnas Gatautis & Otilija Vonžudaitė & Rimantas Bakas & Darius Milčius & Rytis Venčaitis & Darius Pupeikis, 2023. "A Digital Twin Approach to City Block Renovation Using RES Technologies," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    2. Kılkış, Şiir, 2021. "Transition towards urban system integration and benchmarking of an urban area to accelerate mitigation towards net-zero targets," Energy, Elsevier, vol. 236(C).
    3. Hou, Juan & Li, Haoran & Nord, Natasa & Huang, Gongsheng, 2023. "Model predictive control for a university heat prosumer with data centre waste heat and thermal energy storage," Energy, Elsevier, vol. 267(C).
    4. Pakere, Ieva & Feofilovs, Maksims & Lepiksaar, Kertu & Vītoliņš, Valdis & Blumberga, Dagnija, 2023. "Multi-source district heating system full decarbonization strategies: Technical, economic, and environmental assessment," Energy, Elsevier, vol. 285(C).
    5. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    6. Matsui, Kohei & Lin, Jie & Thu, Kyaw & Miyazaki, Takahiko, 2022. "On the performance improvement of an inverted Brayton Cycle using a regenerative heat and mass exchanger," Energy, Elsevier, vol. 249(C).
    7. Han, Ouzhu & Ding, Tao & Mu, Chenggang & Jia, Wenhao & Ma, Zhoujun, 2023. "Waste heat reutilization and integrated demand response for decentralized optimization of data centers," Energy, Elsevier, vol. 264(C).
    8. Janis Edmunds Daugavietis & Raimonda Soloha & Elina Dace & Jelena Ziemele, 2022. "A Comparison of Multi-Criteria Decision Analysis Methods for Sustainability Assessment of District Heating Systems," Energies, MDPI, vol. 15(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    2. Caputo, Paola & Ferla, Giulio & Ferrari, Simone, 2019. "Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy," Energy, Elsevier, vol. 174(C), pages 1210-1218.
    3. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Pauli Hiltunen & Sanna Syri, 2020. "Highly Renewable District Heat for Espoo Utilizing Waste Heat Sources," Energies, MDPI, vol. 13(14), pages 1-21, July.
    6. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
    7. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    8. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    9. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    10. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    11. Salah Vaisi & Saleh Mohammadi & Kyoumars Habibi, 2021. "Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks," Energies, MDPI, vol. 14(17), pages 1-17, September.
    12. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    13. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
    14. Arnaudo, Monica & Dalgren, Johan & Topel, Monika & Laumert, Björn, 2021. "Waste heat recovery in low temperature networks versus domestic heat pumps - A techno-economic and environmental analysis," Energy, Elsevier, vol. 219(C).
    15. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
    16. Hou, Juan & Li, Haoran & Nord, Natasa & Huang, Gongsheng, 2023. "Model predictive control for a university heat prosumer with data centre waste heat and thermal energy storage," Energy, Elsevier, vol. 267(C).
    17. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    18. Chambers, Jonathan & Zuberi, S. & Jibran, M. & Narula, Kapil & Patel, Martin K., 2020. "Spatiotemporal analysis of industrial excess heat supply for district heat networks in Switzerland," Energy, Elsevier, vol. 192(C).
    19. Moreno, Diana & Nielsen, Steffen & Sorknæs, Peter & Lund, Henrik & Thellufsen, Jakob Zinck & Mathiesen, Brian Vad, 2024. "Exploring the location and use of baseload district heating supply. What can current heat sources tell us about future opportunities?," Energy, Elsevier, vol. 288(C).
    20. Popovski, Eftim & Aydemir, Ali & Fleiter, Tobias & Bellstädt, Daniel & Büchele, Richard & Steinbach, Jan, 2019. "The role and costs of large-scale heat pumps in decarbonising existing district heating networks – A case study for the city of Herten in Germany," Energy, Elsevier, vol. 180(C), pages 918-933.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.