IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v230y2021ics0360544221010781.html
   My bibliography  Save this article

A simulation and experimental study of an innovative MAC/ORC/ERC system: ReverCycle with an ejector for series hybrid vehicles

Author

Listed:
  • Di Cairano, L.
  • Bou Nader, W.
  • Nemer, M.

Abstract

This paper presents the simulations and experiments for the development of a hybrid and reversible mobile air conditioning, organic Rankine cycle (ORC), and ejector refrigeration cycle (ERC) system. This flexible and compact system may be the solution to the introduction of waste heat recovery in passenger cars. The cycle fuel economy is calculated for series hybrid electric vehicles (SHEVs). A global vehicle model is used to simulate the annual weather conditions of different climatic regions. The reference driving cycle is the Worldwide Harmonized Light Vehicle Test Cycle.

Suggested Citation

  • Di Cairano, L. & Bou Nader, W. & Nemer, M., 2021. "A simulation and experimental study of an innovative MAC/ORC/ERC system: ReverCycle with an ejector for series hybrid vehicles," Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221010781
    DOI: 10.1016/j.energy.2021.120830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221010781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dumont, Olivier & Parthoens, Antoine & Dickes, Rémi & Lemort, Vincent, 2018. "Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system," Energy, Elsevier, vol. 165(PA), pages 1119-1127.
    2. Desideri, Adriano & Hernandez, Andres & Gusev, Sergei & van den Broek, Martijn & Lemort, Vincent & Quoilin, Sylvain, 2016. "Steady-state and dynamic validation of a small-scale waste heat recovery system using the ThermoCycle Modelica library," Energy, Elsevier, vol. 115(P1), pages 684-696.
    3. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    4. Di Cairano, L. & Bou Nader, W. & Nemer, M., 2020. "Assessing fuel consumption reduction in Revercycle, a reversible mobile air conditioning/ Organic Rankine Cycle system," Energy, Elsevier, vol. 210(C).
    5. Muhyiddine Jradi & Jinxing Li & Hao Liu & Saffa Riffat, 2014. "Micro-scale ORC-based combined heat and power system using a novel scroll expander," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(2), pages 91-99.
    6. Hogerwaard, Janette & Dincer, Ibrahim & Zamfirescu, Calin, 2013. "Analysis and assessment of a new organic Rankine based heat engine system with/without cogeneration," Energy, Elsevier, vol. 62(C), pages 300-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kai & Wang, Lei & Gao, Rui, 2023. "An extended mechanism model of gaseous ejectors," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Cairano, L. & Bou Nader, W. & Nemer, M., 2020. "Assessing fuel consumption reduction in Revercycle, a reversible mobile air conditioning/ Organic Rankine Cycle system," Energy, Elsevier, vol. 210(C).
    2. Piotr Kolasiński, 2020. "The Method of the Working Fluid Selection for Organic Rankine Cycle (ORC) Systems Employing Volumetric Expanders," Energies, MDPI, vol. 13(3), pages 1-28, January.
    3. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    4. Piotr Kolasiński, 2020. "Domestic Organic Rankine Cycle-Based Cogeneration Systems as a Way to Reduce Dust Emissions in Municipal Heating," Energies, MDPI, vol. 13(15), pages 1-22, August.
    5. Song, Panpan & Wei, Mingshan & Liu, Zhen & Zhao, Ben, 2015. "Effects of suction port arrangements on a scroll expander for a small scale ORC system based on CFD approach," Applied Energy, Elsevier, vol. 150(C), pages 274-285.
    6. Wronski, Jorrit & Imran, Muhammad & Skovrup, Morten Juel & Haglind, Fredrik, 2019. "Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems," Applied Energy, Elsevier, vol. 247(C), pages 403-416.
    7. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    8. Włodarski, Wojciech, 2018. "Experimental investigations and simulations of the microturbine unit with permanent magnet generator," Energy, Elsevier, vol. 158(C), pages 59-71.
    9. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar & Amir Reza Razmi, 2020. "4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant with Flue Gas Condensation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    10. Marian Piwowarski & Krzysztof Kosowski & Marcin Richert, 2023. "Organic Supercritical Thermodynamic Cycles with Isothermal Turbine," Energies, MDPI, vol. 16(12), pages 1-17, June.
    11. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    12. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    13. Karimi, Ali & Gimelli, Alfredo & Iossa, Raffaele & Muccillo, Massimiliano, 2024. "Techno-economic simulation and sensitivity analysis of modular cogeneration with organic rankine cycle and battery energy storage system for enhanced energy performance," Energy, Elsevier, vol. 295(C).
    14. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    15. Wang, Xuan & Shu, Gequn & Tian, Hua & Liu, Peng & Jing, Dongzhan & Li, Xiaoya, 2018. "The effects of design parameters on the dynamic behavior of organic ranking cycle for the engine waste heat recovery," Energy, Elsevier, vol. 147(C), pages 440-450.
    16. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.
    17. Shu, Gequn & Wang, Rui & Tian, Hua & Wang, Xuan & Li, Xiaoya & Cai, Jinwen & Xu, Zhiqiang, 2020. "Dynamic performance of the transcritical power cycle using CO2-based binary zeotropic mixtures for truck engine waste heat recovery," Energy, Elsevier, vol. 194(C).
    18. Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.
    19. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.
    20. Włodarski, Wojciech, 2019. "A model development and experimental verification for a vapour microturbine with a permanent magnet synchronous generator," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221010781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.