IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v230y2021ics0360544221010276.html
   My bibliography  Save this article

Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method

Author

Listed:
  • Qian, Jiaxin
  • Wu, Jiahui
  • Yao, Lei
  • Mahmut, Saniye
  • Zhang, Qiang

Abstract

To make full use of abundant new energy sources and meet the diverse energy demands of users, a system with new energy resources could be used to realize a combined cooling, heating, and power (CCHP) system. Environmental pressure can be reduced when new energy is used as a heat source or auxiliary power source. However, many kinds of energy can lead to uncertainty, low energy utilization rate, and high cost with the increasing types of energy. Therefore, an evaluation method of the advantages and disadvantages of a CCHP system coupled with wind and solar (Wind-Solar-CCHP) is needed. Firstly, emergy theory is introduced to evaluate the sustainable development level of the two systems, and a new comprehensive evaluation index system is established by combining emergy indexes with traditional indicators. Secondly, a multi-objective decision-making (MODM) method is proposed based on fuzzy-analytic hierarchy process (Fuzzy-AHP), anti-entropy weighting (AEW), and game theory to calculate the weights of these indexes. Then, the Kendall rank correlation coefficient is used to determine the correlation between the CCHP and Wind-Solar-CCHP systems. Taking the CCHP system as a reference, the integrated performance of the systems is analyzed by using the fuzzy comprehensive evaluation (FCE) method. Finally, an example of a hotel in a city in western China is selected for verification. The accuracy and robustness of the proposed method were verified by sensitivity analysis. The obtained experimental results indicate that the comprehensive performance of the Wind-Solar-CCHP system was superior to that of the CCHP system. Compared with other methods in the literature, the proposed method could achieve unification of subjective and objective attribute weights, overcome the limitations of the existing single evaluation method, and make the evaluation results more accurate. Moreover, these research results can provide a reference for the comprehensive utilization of new energy in China.

Suggested Citation

  • Qian, Jiaxin & Wu, Jiahui & Yao, Lei & Mahmut, Saniye & Zhang, Qiang, 2021. "Comprehensive performance evaluation of Wind-Solar-CCHP system based on emergy analysis and multi-objective decision method," Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221010276
    DOI: 10.1016/j.energy.2021.120779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221010276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Kun & Ding, Yan & Zhu, Neng & Yang, Fan & Wang, Qiaochu, 2018. "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," Applied Energy, Elsevier, vol. 229(C), pages 352-363.
    2. Ma, Weiwu & Fang, Song & Liu, Gang, 2017. "Hybrid optimization method and seasonal operation strategy for distributed energy system integrating CCHP, photovoltaic and ground source heat pump," Energy, Elsevier, vol. 141(C), pages 1439-1455.
    3. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    4. Ren, Hongbo & Gao, Weijun & Zhou, Weisheng & Nakagami, Ken'ichi, 2009. "Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan," Energy Policy, Elsevier, vol. 37(12), pages 5484-5493, December.
    5. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    6. Li, Fan & Sun, Bo & Zhang, Chenghui & Liu, Che, 2019. "A hybrid optimization-based scheduling strategy for combined cooling, heating, and power system with thermal energy storage," Energy, Elsevier, vol. 188(C).
    7. Si, Tong & Wang, Chunbo & Liu, Ruiqi & Guo, Yusheng & Yue, Shuang & Ren, Yujie, 2020. "Multi-criteria comprehensive energy efficiency assessment based on fuzzy-AHP method: A case study of post-treatment technologies for coal-fired units," Energy, Elsevier, vol. 200(C).
    8. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    9. Bai, Zhang & Liu, Taixiu & Liu, Qibin & Lei, Jing & Gong, Liang & Jin, Hongguang, 2018. "Performance investigation of a new cooling, heating and power system with methanol decomposition based chemical recuperation process," Applied Energy, Elsevier, vol. 229(C), pages 1152-1163.
    10. Chen, Jialing & Li, Xian & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Energetic, economic, and environmental assessment of a Stirling engine based gasification CCHP system," Applied Energy, Elsevier, vol. 281(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Jianli & Liu, Dandan & Sha, Ru & Sun, Jingbing & Wang, Yubao & Wu, Yunna, 2024. "Geospatial simulation and decision optimization towards identifying the layout suitability and priority for wind-photovoltaic-hydrogen-ammonia project: An empirical study in China," Energy, Elsevier, vol. 286(C).
    2. Zhao, Junjie & Luo, Xiaobing & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel CCHP system based on a closed PEMEC-PEMFC loop with water self-supply," Applied Energy, Elsevier, vol. 338(C).
    3. Moosazadeh, Mohammad & Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2023. "Techno-economic feasibility and environmental impact evaluation of a hybrid solar thermal membrane-based power desalination system," Energy, Elsevier, vol. 278(PA).
    4. Chen, Hao & Wang, Yu & Zuo, Mingsheng & Zhang, Chao & Jia, Ninghong & Liu, Xiliang & Yang, Shenglai, 2022. "A new prediction model of CO2 diffusion coefficient in crude oil under reservoir conditions based on BP neural network," Energy, Elsevier, vol. 239(PC).
    5. Xin Zhao & Yanqi Chen & Gang Xu & Heng Chen, 2022. "Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant," Energies, MDPI, vol. 16(1), pages 1-21, December.
    6. Ai, Tianchao & Chen, Hongwei & Zhong, Fanghao & Jia, Jiandong & Song, Yangfan, 2023. "Multi-objective optimization of a novel CCHP system with organic flash cycle based on different operating strategies," Energy, Elsevier, vol. 276(C).
    7. Bai, Xueyan & Fan, Yanfang & Hou, Junjie & Liu, Junyi, 2023. "Evaluation method of renewable energy flexibility confidence capacity under different penetration rates," Energy, Elsevier, vol. 281(C).
    8. Wang, Fuwei & Chen, Dongxia & Li, Meijun & Chen, Zhangxin & Wang, Qiaochu & Jiang, Mengya & Rong, Lanxi & Wang, Yuqi & Li, Sha & Iltaf, Khawaja Hasnain & Wanma, Renzeng & Liu, Chen, 2024. "A novel method for predicting shallow hydrocarbon accumulation based on source-fault-sand (S-F-Sd) evaluation and ensemble neural network (ENN)," Applied Energy, Elsevier, vol. 359(C).
    9. Kong, Mengdi & Ye, Xuemin & Liu, Di & Li, Chunxi, 2024. "Comprehensive evaluation of medical waste gasification low-carbon multi-generation system based on AHP–EWM–GFCE method," Energy, Elsevier, vol. 296(C).
    10. Zhao, Xiangming & Guo, Jianxiang & He, Maogang, 2023. "Multi-objective optimization and improvement of multi-energy combined cooling, heating and power system based on system simplification," Renewable Energy, Elsevier, vol. 217(C).
    11. Karaaslan, Abdulkerim & Gezen, Mesliha, 2022. "The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coefficient," Renewable Energy, Elsevier, vol. 182(C), pages 842-854.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    2. Deng, Yan & Zeng, Rong & Liu, Yicai, 2022. "A novel off-design model to optimize combined cooling, heating and power system with hybrid chillers for different operation strategies," Energy, Elsevier, vol. 239(PB).
    3. Yitao Zhao & Xin Lv & Xin Shen & Gang Wang & Zhao Li & Pinqin Yu & Zhao Luo, 2023. "Determination of Weights for the Integrated Energy System Assessment Index with Electrical Energy Substitution in the Dual Carbon Context," Energies, MDPI, vol. 16(4), pages 1-15, February.
    4. Xiao Gong & Fan Li & Bo Sun & Dong Liu, 2020. "Collaborative Optimization of Multi-Energy Complementary Combined Cooling, Heating, and Power Systems Considering Schedulable Loads," Energies, MDPI, vol. 13(4), pages 1-17, February.
    5. Ye Li & Shixuan Li & Shiyao Xia & Bojia Li & Xinyu Zhang & Boyuan Wang & Tianzhen Ye & Wandong Zheng, 2023. "A Review on the Policy, Technology and Evaluation Method of Low-Carbon Buildings and Communities," Energies, MDPI, vol. 16(4), pages 1-43, February.
    6. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    7. Zhang, Xiaofeng & Yan, Renshi & Zeng, Rong & Zhu, Ruilin & Kong, Xiaoying & He, Yecong & Li, Hongqiang, 2022. "Integrated performance optimization of a biomass-based hybrid hydrogen/thermal energy storage system for building and hydrogen vehicles," Renewable Energy, Elsevier, vol. 187(C), pages 801-818.
    8. Hong-Hai Niu & Yang Zhao & Shang-Shang Wei & Yi-Guo Li, 2021. "A Variable Performance Parameters Temperature–Flowrate Scheduling Model for Integrated Energy Systems," Energies, MDPI, vol. 14(17), pages 1-25, August.
    9. Yuan, Yu & Bai, Zhang & Liu, Qibin & Hu, Wenxin & Zheng, Bo, 2021. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Route of enhancing the operation flexibility," Applied Energy, Elsevier, vol. 301(C).
    10. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    11. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    12. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    13. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    14. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    15. Mohamed Ali Elleuch & Marwa Mallek & Ahmed Frikha & Wafik Hachicha & Awad M. Aljuaid & Murad Andejany, 2021. "Solving a Multiple User Energy Source Selection Problem Using a Fuzzy Multi-Criteria Group Decision-Making Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
    16. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    17. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    18. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    19. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    20. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:230:y:2021:i:c:s0360544221010276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.