IDEAS home Printed from https://ideas.repec.org/a/igg/jisscm/v15y2022i2p1-12.html
   My bibliography  Save this article

Multi-Objective Optimization Information Fusion and Its Applications for Logistics Centers Maximum Coverage

Author

Listed:
  • Xiao Ya Deng

    (School of Intelligent Manufacturing, Sichuan University of Arts and Science, China)

Abstract

From past the development direction of logistics centers covering problem, the main solution is almost always relying on modern computer and gradually developed intelligent algorithm, at the same time, the previous understanding of dynamic covering location model is not "dynamic", in order to improve the unreasonable distribution of logistics centers deployment time, improve the service coverage, coverage as the optimization goal to logistics centers, logistics centers as well as each one can be free to move according to certain rules of "dot", according to the conditions set by the site moved to a more reasonable. The innovation of all algorithms in this paper lies in that the logistics centers themselves are regarded as the subject of free "activities", and they are allowed to move freely according to these rules by setting certain moving rules. Simulation results show that the algorithm has good coverage effect and can meet the requirements of logistics centers for coverage effect.

Suggested Citation

  • Xiao Ya Deng, 2022. "Multi-Objective Optimization Information Fusion and Its Applications for Logistics Centers Maximum Coverage," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 15(2), pages 1-12, April.
  • Handle: RePEc:igg:jisscm:v:15:y:2022:i:2:p:1-12
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISSCM.287865
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Attia, Ahmed M. & Al Hanbali, Ahmad & Saleh, Haitham H. & Alsawafy, Omar G. & Ghaithan, Ahmed M. & Mohammed, Awsan, 2021. "A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system," Energy, Elsevier, vol. 229(C).
    2. Ma, Xuemin & Yang, Jingming & Sun, Hao & Hu, Ziyu & Wei, Lixin, 2021. "Feature information prediction algorithm for dynamic multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 295(3), pages 965-981.
    3. Schmid, Fabian & Winzer, Joscha & Pasemann, André & Behrendt, Frank, 2021. "An open-source modeling tool for multi-objective optimization of renewable nano/micro-off-grid power supply system: Influence of temporal resolution, simulation period, and location," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghaithan, Ahmed M. & Mohammed, Awsan & Al-Hanbali, Ahmad & Attia, Ahmed M. & Saleh, Haitham, 2022. "Multi-objective optimization of a photovoltaic-wind- grid connected system to power reverse osmosis desalination plant," Energy, Elsevier, vol. 251(C).
    2. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    3. Sun, Hao & Wang, Cong & Li, Xiaxia & Hu, Ziyu, 2024. "A decision variable classification strategy based on the degree of environmental change for dynamic multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 313(1), pages 296-311.
    4. Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).
    5. Zhao, Yi-Bo & Dong, Xiao-Jian & Shen, Jia-Ni & He, Yi-Jun, 2024. "Simultaneous sizing and scheduling optimization for PV-wind-battery hybrid systems with a modified battery lifetime model: A high-resolution analysis in China," Applied Energy, Elsevier, vol. 360(C).
    6. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    7. Cano, Antonio & Arévalo, Paul & Jurado, Francisco, 2022. "Evaluation of temporal resolution impact on power fluctuations and self-consumption for a hydrokinetic on grid system using supercapacitors," Renewable Energy, Elsevier, vol. 193(C), pages 843-856.
    8. Schmid, Fabian & Behrendt, Frank, 2023. "Genetic sizing optimization of residential multi-carrier energy systems: The aim of energy autarky and its cost," Energy, Elsevier, vol. 262(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jisscm:v:15:y:2022:i:2:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.