IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v227y2021ics0360544221007040.html
   My bibliography  Save this article

Impact of Covid-19 pandemic on electricity demand in the UK based on multivariate time series forecasting with Bidirectional Long Short Term Memory

Author

Listed:
  • Liu, Xiaolei
  • Lin, Zi

Abstract

Due to lockdown measures taken by the UK government during the Coronavirus disease 2019 pandemic, the national electricity demand profile presented a notably different performance. The Coronavirus disease 2019 crisis has provided a unique opportunity to investigate how such a landscape-scale lockdown can influence the national electricity system. However, the impacts of social and economic restrictions on daily electricity demands are still poorly understood. This paper investigated how the UK-wide electricity demand was influenced during the Coronavirus disease 2019 crisis based on multivariate time series forecasting with Bidirectional Long Short Term Memory, to comprehend its correlations with containment measures, weather conditions, and renewable energy supplies. A deep-learning-based predictive model was established for daily electricity demand time series forecasting, which was trained by multiple features, including the number of coronavirus tests (smoothed), wind speed, ambient temperature, biomass, solar & wind power supplies, and historical electricity demand. Besides, the effects of Coronavirus disease 2019 pandemic on the Net-Zero target of 2050 were also studied through an interlinked approach.

Suggested Citation

  • Liu, Xiaolei & Lin, Zi, 2021. "Impact of Covid-19 pandemic on electricity demand in the UK based on multivariate time series forecasting with Bidirectional Long Short Term Memory," Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007040
    DOI: 10.1016/j.energy.2021.120455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221007040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Editorial, 2020. "Covid-19 and Climate Change," Journal, Review of Agrarian Studies, vol. 10(1), pages 5-6, January-J.
    2. Rosenberg, Eva & Lind, Arne & Espegren, Kari Aamodt, 2013. "The impact of future energy demand on renewable energy production – Case of Norway," Energy, Elsevier, vol. 61(C), pages 419-431.
    3. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    4. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    5. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    6. Klemeš, Jiří Jaromír & Fan, Yee Van & Jiang, Peng, 2020. "The energy and environmental footprints of COVID-19 fighting measures – PPE, disinfection, supply chains," Energy, Elsevier, vol. 211(C).
    7. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    8. Zi Lin & Xiaolei Liu & Ziming Feng, 2020. "Systematic Investigation of Integrating Small Wind Turbines into Power Supply for Hydrocarbon Production," Energies, MDPI, vol. 13(12), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bazzana, Davide & Cohen, Jed J. & Golinucci, Nicolò & Hafner, Manfred & Noussan, Michel & Reichl, Johannes & Rocco, Matteo Vincenzo & Sciullo, Alessandro & Vergalli, Sergio, 2022. "A multi-disciplinary approach to estimate the medium-term impact of COVID-19 on transport and energy: A case study for Italy," Energy, Elsevier, vol. 238(PC).
    2. Zhiang Zhang & Ali Cheshmehzangi & Saeid Pourroostaei Ardakani, 2021. "A Data-Driven Clustering Analysis for the Impact of COVID-19 on the Electricity Consumption Pattern of Zhejiang Province, China," Energies, MDPI, vol. 14(23), pages 1-22, December.
    3. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    4. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    5. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    6. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    7. Michail Tsangas & Iliana Papamichael & Antonis A. Zorpas, 2023. "Sustainable Energy Planning in a New Situation," Energies, MDPI, vol. 16(4), pages 1-12, February.
    8. Yukseltan, E. & Kok, A. & Yucekaya, A. & Bilge, A. & Aktunc, E. Agca & Hekimoglu, M., 2022. "The impact of the COVID-19 pandemic and behavioral restrictions on electricity consumption and the daily demand curve in Turkey," Utilities Policy, Elsevier, vol. 76(C).
    9. Fahad Radhi Alharbi & Denes Csala, 2021. "Wind Speed and Solar Irradiance Prediction Using a Bidirectional Long Short-Term Memory Model Based on Neural Networks," Energies, MDPI, vol. 14(20), pages 1-22, October.
    10. Jincheng Zhou & Dan Wang & Shahab S. Band & Changhyun Jun & Sayed M. Bateni & M. Moslehpour & Hao-Ting Pai & Chung-Chian Hsu & Rasoul Ameri, 2023. "Monthly River Discharge Forecasting Using Hybrid Models Based on Extreme Gradient Boosting Coupled with Wavelet Theory and Lévy–Jaya Optimization Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3953-3972, August.
    11. Garcia-Rendon, John & Rey Londoño, Felipe & Arango Restrepo, Luis José & Bohorquez Correa, Santiago, 2023. "Sectoral analysis of electricity consumption during the COVID-19 pandemic: Evidence for unregulated and regulated markets in Colombia," Energy, Elsevier, vol. 268(C).
    12. Trizoglou, Pavlos & Liu, Xiaolei & Lin, Zi, 2021. "Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines," Renewable Energy, Elsevier, vol. 179(C), pages 945-962.
    13. Halbrügge, Stephanie & Buhl, Hans Ulrich & Fridgen, Gilbert & Schott, Paul & Weibelzahl, Martin & Weissflog, Jan, 2022. "How Germany achieved a record share of renewables during the COVID-19 pandemic while relying on the European interconnected power network," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan Ngoc Dinh & Gokul Sidarth Thirunavukkarasu & Mehdi Seyedmahmoudian & Saad Mekhilef & Alex Stojcevski, 2023. "Energy Consumption Forecasting in Commercial Buildings during the COVID-19 Pandemic: A Multivariate Multilayered Long-Short Term Memory Time-Series Model with Knowledge Injection," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    2. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    4. Luis M. Abadie, 2021. "Energy Market Prices in Times of COVID-19: The Case of Electricity and Natural Gas in Spain," Energies, MDPI, vol. 14(6), pages 1-17, March.
    5. VandenHeuvel, Daniel & Wu, Jinran & Wang, You-Gan, 2023. "Robust regression for electricity demand forecasting against cyberattacks," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1573-1592.
    6. Sławomir Bielecki & Tadeusz Skoczkowski & Lidia Sobczak & Janusz Buchoski & Łukasz Maciąg & Piotr Dukat, 2021. "Impact of the Lockdown during the COVID-19 Pandemic on Electricity Use by Residential Users," Energies, MDPI, vol. 14(4), pages 1-32, February.
    7. Halbrügge, Stephanie & Buhl, Hans Ulrich & Fridgen, Gilbert & Schott, Paul & Weibelzahl, Martin & Weissflog, Jan, 2022. "How Germany achieved a record share of renewables during the COVID-19 pandemic while relying on the European interconnected power network," Energy, Elsevier, vol. 246(C).
    8. Luo, Shihua & Hu, Weihao & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2022. "Flexibility enhancement measures under the COVID-19 pandemic – A preliminary comparative analysis in Denmark, the Netherlands, and Sichuan of China," Energy, Elsevier, vol. 239(PC).
    9. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    10. Chakraborty, Debaditya & Alam, Arafat & Chaudhuri, Saptarshi & Başağaoğlu, Hakan & Sulbaran, Tulio & Langar, Sandeep, 2021. "Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence," Applied Energy, Elsevier, vol. 291(C).
    11. Bazzana, Davide & Cohen, Jed J. & Golinucci, Nicolò & Hafner, Manfred & Noussan, Michel & Reichl, Johannes & Rocco, Matteo Vincenzo & Sciullo, Alessandro & Vergalli, Sergio, 2022. "A multi-disciplinary approach to estimate the medium-term impact of COVID-19 on transport and energy: A case study for Italy," Energy, Elsevier, vol. 238(PC).
    12. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    13. Andrea Baranzini & Stefano Carattini & Linda Tesauro, 2021. "Designing Effective and Acceptable Road Pricing Schemes: Evidence from the Geneva Congestion Charge," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 417-482, July.
    14. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    15. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    16. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    17. Patrycja Klusak & Matthew Agarwala & Matt Burke & Moritz Kraemer & Kamiar Mohaddes, 2023. "Rising Temperatures, Falling Ratings: The Effect of Climate Change on Sovereign Creditworthiness," Management Science, INFORMS, vol. 69(12), pages 7468-7491, December.
    18. David Klenert & Franziska Funke & Linus Mattauch & Brian O’Callaghan, 2020. "Five Lessons from COVID-19 for Advancing Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 751-778, August.
    19. Nguyen, Minh-Hoang & Vuong, Quan-Hoang, 2020. "The third finding concerning a missing cultural value: a bibliometric analysis using the Web of Science," OSF Preprints jbcx3, Center for Open Science.
    20. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.