IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544221002991.html
   My bibliography  Save this article

Study on the impacts of Shanghai crude oil futures on global oil market and oil industry based on VECM and DAG models

Author

Listed:
  • Zhang, Qi
  • Di, Peng
  • Farnoosh, Arash

Abstract

In the present study, the daily settlement data of Shanghai crude oil futures and world’s major crude oils are selected. The role of Shanghai crude oil futures is studied regarding its pricing power and hedging risk. The dynamic relation analysis between Shanghai crude oil futures and international oil market is conducted by using rolling window causality test. The vector error correction model (VECM) and directed acyclic graph (DAG) are used to explore the long-term relationship and identify the contemporaneous causality structure respectively. Then Shanghai crude oil futures’ impacts on other oil price fluctuations are analyzed by using variance decomposition method. The obtained analysis results show that the pricing power of Shanghai crude oil futures is limited compared with the international benchmark oil price, but it has begun to have a contemporaneous influence in the Asian oil market price transmission and better reflect oil supply and demand. Moreover, Shengli crude oil has stronger impact on the pricing mechanism after the listing of Shanghai crude oil futures. Furthermore, it also establishes an effective hedging tool for oil importers and refineries. Therefore, although the Shanghai crude oil futures is still in its initial development stage at present, it provides an important basis for becoming a regional benchmark in Asia and a useful instrument for energy market participants, influencing China’s oil industry in import price and consumption.

Suggested Citation

  • Zhang, Qi & Di, Peng & Farnoosh, Arash, 2021. "Study on the impacts of Shanghai crude oil futures on global oil market and oil industry based on VECM and DAG models," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002991
    DOI: 10.1016/j.energy.2021.120050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghassan, Hassan Belkacem & AlHajhoj, Hassan Rafdan, 2016. "Long run dynamic volatilities between OPEC and non-OPEC crude oil prices," Applied Energy, Elsevier, vol. 169(C), pages 384-394.
    2. Holmes, Mark J. & Otero, Jesús, 2019. "Re-examining the movements of crude oil spot and futures prices over time," Energy Economics, Elsevier, vol. 82(C), pages 224-236.
    3. Shao, Ying-Hui & Yang, Yan-Hong & Shao, Hao-Lin & Stanley, H. Eugene, 2019. "Time-varying lead–lag structure between the crude oil spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 723-733.
    4. M. A. Adelman, 1984. "International Oil Agreements," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-10.
    5. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    6. Zhang, Dayong & Ji, Qiang & Kutan, Ali M., 2019. "Dynamic transmission mechanisms in global crude oil prices: Estimation and implications," Energy, Elsevier, vol. 175(C), pages 1181-1193.
    7. Changming Song & Chongguang Li, 2015. "Relationship between Chinese and International Crude Oil Prices: A VEC-TARCH Approach," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, November.
    8. C S Savva & D R Osborn & L Gill, 2005. "Spillovers and Correlations between US and Major European Stock Markets: The Role of the Euro," Centre for Growth and Business Cycle Research Discussion Paper Series 64, Economics, The University of Manchester.
    9. Wang, Feng & Ye, Xin & Wu, Congxin, 2019. "Multifractal characteristics analysis of crude oil futures prices fluctuation in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    10. Chen, Pei-Fen & Lee, Chien-Chiang & Zeng, Jhih-Hong, 2014. "The relationship between spot and futures oil prices: Do structural breaks matter?," Energy Economics, Elsevier, vol. 43(C), pages 206-217.
    11. Shawkat M. Hammoudeh & Bradley T. Ewing & Mark A. Thompson, 2008. "Threshold Cointegration Analysis of Crude Oil Benchmarks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 79-96.
    12. Zhang, Yue-Jun & Zhang, Lu, 2015. "Interpreting the crude oil price movements: Evidence from the Markov regime switching model," Applied Energy, Elsevier, vol. 143(C), pages 96-109.
    13. Jena, Sangram Keshari & Tiwari, Aviral Kumar & Hammoudeh, Shawkat & Roubaud, David, 2019. "Distributional predictability between commodity spot and futures: Evidence from nonparametric causality-in-quantiles tests," Energy Economics, Elsevier, vol. 78(C), pages 615-628.
    14. Liu, Li & Chen, Ching-Cheng & Wan, Jieqiu, 2013. "Is world oil market “one great pool”?: An example from China's and international oil markets," Economic Modelling, Elsevier, vol. 35(C), pages 364-373.
    15. Li, Raymond & Leung, Guy C.K., 2011. "The integration of China into the world crude oil market since 1998," Energy Policy, Elsevier, vol. 39(9), pages 5159-5166, September.
    16. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    17. Wang, Yudong & Geng, Qianjie & Meng, Fanyi, 2019. "Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks," Energy, Elsevier, vol. 181(C), pages 815-826.
    18. LI, Jie & HUANG, Lixin & LI, Ping, 2021. "Are Chinese crude oil futures good hedging tools?," Finance Research Letters, Elsevier, vol. 38(C).
    19. Jiang, Meihui & An, Haizhong & Jia, Xiaoliang & Sun, Xiaoqi, 2017. "The influence of global benchmark oil prices on the regional oil spot market in multi-period evolution," Energy, Elsevier, vol. 118(C), pages 742-752.
    20. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things you should know about DCC," Tinbergen Institute Discussion Papers 13-048/III, Tinbergen Institute.
    21. Apostolos Serletis & Libo Xu, 2019. "Markov Switching Oil Price Uncertainty," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(5), pages 1045-1064, October.
    22. Zhang, Bing & Wang, Peijie, 2014. "Return and volatility spillovers between china and world oil markets," Economic Modelling, Elsevier, vol. 42(C), pages 413-420.
    23. Gao, Xiangyun & Fang, Wei & An, Feng & Wang, Yue, 2017. "Detecting method for crude oil price fluctuation mechanism under different periodic time series," Applied Energy, Elsevier, vol. 192(C), pages 201-212.
    24. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know about the Dynamic Conditional Correlation Representation," Econometrics, MDPI, vol. 1(1), pages 1-12, June.
    25. Jia, Xiaoliang & An, Haizhong & Fang, Wei & Sun, Xiaoqi & Huang, Xuan, 2015. "How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective," Energy Economics, Elsevier, vol. 49(C), pages 588-598.
    26. Ji, Qiang & Fan, Ying, 2016. "How do China's oil markets affect other commodity markets both domestically and internationally?," Finance Research Letters, Elsevier, vol. 19(C), pages 247-254.
    27. Hung, Jui-Cheng & Yi-Hsien Wang, & Chang, Matthew C. & Shih, Kuang-Hsun & Hsiu-Hsueh Kao,, 2011. "Minimum variance hedging with bivariate regime-switching model for WTI crude oil," Energy, Elsevier, vol. 36(5), pages 3050-3057.
    28. Xiaoyong Xiao & Jing Huang, 2018. "Dynamic Connectedness of International Crude Oil Prices: The Diebold–Yilmaz Approach," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    29. Szymon Wlazlowski & Bjorn Hagstromer & Monica Giulietti, 2011. "Causality in crude oil prices," Applied Economics, Taylor & Francis Journals, vol. 43(24), pages 3337-3347.
    30. Yang, Chen & Lv, Fei & Fang, Libing & Shang, Xingxing, 2020. "The pricing efficiency of crude oil futures in the Shanghai International Exchange," Finance Research Letters, Elsevier, vol. 36(C).
    31. Lu, Feng-bin & Hong, Yong-miao & Wang, Shou-yang & Lai, Kin-keung & Liu, John, 2014. "Time-varying Granger causality tests for applications in global crude oil markets," Energy Economics, Elsevier, vol. 42(C), pages 289-298.
    32. Balcilar, Mehmet & Gungor, Hasan & Hammoudeh, Shawkat, 2015. "The time-varying causality between spot and futures crude oil prices: A regime switching approach," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 51-71.
    33. Narayan, Paresh Kumar & Narayan, Seema & Popp, Stephan, 2011. "Investigating price clustering in the oil futures market," Applied Energy, Elsevier, vol. 88(1), pages 397-402, January.
    34. Jan Bentzen, 2007. "Does OPEC influence crude oil prices? Testing for co-movements and causality between regional crude oil prices," Applied Economics, Taylor & Francis Journals, vol. 39(11), pages 1375-1385.
    35. Hing Lin Chan & Kai-Yin Woo, 2016. "An investigation into the dynamic relationship between international and China’s crude oil prices," Applied Economics, Taylor & Francis Journals, vol. 48(24), pages 2215-2224, May.
    36. Meng, Juan & Nie, He & Mo, Bin & Jiang, Yonghong, 2020. "Risk spillover effects from global crude oil market to China’s commodity sectors," Energy, Elsevier, vol. 202(C).
    37. Chen, K.C. & Chen, Shaoling & Wu, Lifan, 2009. "Price causal relations between China and the world oil markets," Global Finance Journal, Elsevier, vol. 20(2), pages 107-118.
    38. Jia, Xiaoliang & An, Haizhong & Sun, Xiaoqi & Huang, Xuan & Wang, Lijun, 2017. "Evolution of world crude oil market integration and diversification: A wavelet-based complex network perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1788-1798.
    39. Klein, Tony, 2018. "Trends and contagion in WTI and Brent crude oil spot and futures markets - The role of OPEC in the last decade," Energy Economics, Elsevier, vol. 75(C), pages 636-646.
    40. Lin, Sharon Xiaowen & Tamvakis, Michael N., 2001. "Spillover effects in energy futures markets," Energy Economics, Elsevier, vol. 23(1), pages 43-56, January.
    41. Elder, John & Miao, Hong & Ramchander, Sanjay, 2014. "Price discovery in crude oil futures," Energy Economics, Elsevier, vol. 46(S1), pages 18-27.
    42. An, Sufang & Gao, Xiangyun & An, Haizhong & An, Feng & Sun, Qingru & Liu, Siyao, 2020. "Windowed volatility spillover effects among crude oil prices," Energy, Elsevier, vol. 200(C).
    43. Davidson, James E H, et al, 1978. "Econometric Modelling of the Aggregate Time-Series Relationship between Consumers' Expenditure and Income in the United Kingdom," Economic Journal, Royal Economic Society, vol. 88(352), pages 661-692, December.
    44. Kuck, Konstantin & Schweikert, Karsten, 2017. "A Markov regime-switching model of crude oil market integration," Journal of Commodity Markets, Elsevier, vol. 6(C), pages 16-31.
    45. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    46. Lin, Sharon Xiaowen & Tamvakis, Michael N., 2004. "Effects of NYMEX trading on IPE Brent Crude futures markets: a duration analysis," Energy Policy, Elsevier, vol. 32(1), pages 77-82, January.
    47. Ji, Qiang & Fan, Ying, 2016. "Evolution of the world crude oil market integration: A graph theory analysis," Energy Economics, Elsevier, vol. 53(C), pages 90-100.
    48. Ozdemir, Zeynel Abidin & Gokmenoglu, Korhan & Ekinci, Cagdas, 2013. "Persistence in crude oil spot and futures prices," Energy, Elsevier, vol. 59(C), pages 29-37.
    49. Jian Yang & Yinggang Zhou, 2020. "Return and volatility transmission between China's and international crude oil futures markets: A first look," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 860-884, June.
    50. Yang, Zihui & Zhao, Yongliang, 2014. "Energy consumption, carbon emissions, and economic growth in India: Evidence from directed acyclic graphs," Economic Modelling, Elsevier, vol. 38(C), pages 533-540.
    51. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    52. Zhang, Yue-Jun & Wang, Zi-Yi, 2013. "Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence," Applied Energy, Elsevier, vol. 104(C), pages 220-228.
    53. Peng, Cheng & Zhu, Huiming & Guo, Yawei & Chen, Xiuyun, 2018. "Risk spillover of international crude oil to China's firms: Evidence from granger causality across quantile," Energy Economics, Elsevier, vol. 72(C), pages 188-199.
    54. Jiang, Yonghong & Jiang, Cheng & Nie, He & Mo, Bin, 2019. "The time-varying linkages between global oil market and China's commodity sectors: Evidence from DCC-GJR-GARCH analyses," Energy, Elsevier, vol. 166(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao-Lin Shao & Ying-Hui Shao & Yan-Hong Yang, 2021. "New insights into price drivers of crude oil futures markets: Evidence from quantile ARDL approach," Papers 2110.02693, arXiv.org.
    2. Li, Xuemei & Liu, Xiaoxing, 2023. "Functional classification and dynamic prediction of cumulative intraday returns in crude oil futures," Energy, Elsevier, vol. 284(C).
    3. Long, Houyin & Huang, Xiang & Wang, Jiaxin, 2023. "How does energy finance promote energy transition? Evidence from Shanghai crude oil futures," International Review of Financial Analysis, Elsevier, vol. 90(C).
    4. Cui, Jinxin & Maghyereh, Aktham, 2023. "Time-frequency dependence and connectedness among global oil markets: Fresh evidence from higher-order moment perspective," Journal of Commodity Markets, Elsevier, vol. 30(C).
    5. Shao, Mingao & Hua, Yongjun, 2022. "Price discovery efficiency of China's crude oil futures: Evidence from the Shanghai crude oil futures market," Energy Economics, Elsevier, vol. 112(C).
    6. Chen, Bin & Li, Yanlin & Yuan, Mengxue & Shen, Jun & Wang, Sha & Tong, Jianhui & Guo, Yun, 2022. "Study of the Co-pyrolysis characteristics of oil shale with wheat straw based on the hierarchical collection," Energy, Elsevier, vol. 239(PB).
    7. Ivan Aleksandrovich Kopytin & Alexander Oskarovich Maslennikov & Stanislav Vyacheslavovich Zhukov, 2022. "Europe in World Natural Gas Market: International Transmission of European Price Shocks," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 8-15, May.
    8. Dan Zhang & Arash Farnoosh & Zhengwei Ma, 2022. "Does the Launch of Shanghai Crude Oil Futures Stabilize the Spot Market ? A Financial Cycle Perspective," Post-Print hal-03910474, HAL.
    9. Hu, Genhua & Jiang, Haifeng, 2023. "Time-varying jumps in China crude oil futures market impacted by COVID-19 pandemic," Resources Policy, Elsevier, vol. 82(C).
    10. Yang, Weixin & Pan, Lingying & Ding, Qinyi, 2023. "Dynamic analysis of natural gas substitution for crude oil: Scenario simulation and quantitative evaluation," Energy, Elsevier, vol. 282(C).
    11. Pakrooh, Parisa & Manera, Matteo, 2024. "Causality, Connectedness, and Volatility Pass-through among Energy-Metal-Stock-Carbon Markets: New Evidence from the EU," FEEM Working Papers 344790, Fondazione Eni Enrico Mattei (FEEM).
    12. Parisa Pakrooh & Matteo Manera, 2024. "Causality, Connectedness, and Volatility Pass-through among Energy-Metal-Stock-Carbon Markets: New Evidence from the EU," Working Papers 2024.22, Fondazione Eni Enrico Mattei.
    13. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2022. "The growth of oil futures in China: Evidence of market maturity through global crises," Energy Economics, Elsevier, vol. 114(C).
    14. Qian Wang & Yu Wei & Yifeng Zhang & Yuntong Liu, 2023. "Evaluating the Safe-Haven Abilities of Bitcoin and Gold for Crude Oil Market: Evidence During the COVID-19 Pandemic," Evaluation Review, , vol. 47(3), pages 391-432, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Jinxin & Alshater, Muneer M. & Mensi, Walid, 2023. "Higher-order moment risk spillovers and optimal portfolio strategies in global oil markets," Resources Policy, Elsevier, vol. 86(PA).
    2. Zhang, Dayong & Ji, Qiang & Kutan, Ali M., 2019. "Dynamic transmission mechanisms in global crude oil prices: Estimation and implications," Energy, Elsevier, vol. 175(C), pages 1181-1193.
    3. Duan, Kun & Ren, Xiaohang & Wen, Fenghua & Chen, Jinyu, 2023. "Evolution of the information transmission between Chinese and international oil markets: A quantile-based framework," Journal of Commodity Markets, Elsevier, vol. 29(C).
    4. Cui, Jinxin & Maghyereh, Aktham, 2023. "Time-frequency dependence and connectedness among global oil markets: Fresh evidence from higher-order moment perspective," Journal of Commodity Markets, Elsevier, vol. 30(C).
    5. Kuck, Konstantin & Schweikert, Karsten, 2017. "A Markov regime-switching model of crude oil market integration," Journal of Commodity Markets, Elsevier, vol. 6(C), pages 16-31.
    6. Jiasha Fu & Hui Qiao, 2022. "The Time-Varying Connectedness Between China’s Crude Oil Futures and International Oil Markets: A Return and Volatility Spillover Analysis," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 341-376, December.
    7. Hou, Yang & Li, Steven & Wen, Fenghua, 2019. "Time-varying volatility spillover between Chinese fuel oil and stock index futures markets based on a DCC-GARCH model with a semi-nonparametric approach," Energy Economics, Elsevier, vol. 83(C), pages 119-143.
    8. Yuksel Haliloglu, Ebru & Sahin, Serkan & Berument, M. Hakan, 2021. "Brent–Dubai oil spread: Basic drivers," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 492-505.
    9. Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.
    10. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    11. An, Sufang & Gao, Xiangyun & An, Haizhong & An, Feng & Sun, Qingru & Liu, Siyao, 2020. "Windowed volatility spillover effects among crude oil prices," Energy, Elsevier, vol. 200(C).
    12. Jia, Xiaoliang & An, Haizhong & Sun, Xiaoqi & Huang, Xuan & Wang, Lijun, 2017. "Evolution of world crude oil market integration and diversification: A wavelet-based complex network perspective," Applied Energy, Elsevier, vol. 185(P2), pages 1788-1798.
    13. Apostolakis, George N. & Floros, Christos & Gkillas, Konstantinos & Wohar, Mark, 2024. "Volatility spillovers across the spot and futures oil markets after news announcements," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    14. Niyati Bhanja & Samia Nasreen & Arif Billah Dar & Aviral Kumar Tiwari, 2022. "Connectedness in International Crude Oil Markets," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 227-262, January.
    15. An, Sufang & An, Feng & Gao, Xiangyun & Wang, Anjian, 2023. "Early warning of critical transitions in crude oil price," Energy, Elsevier, vol. 280(C).
    16. García Ruiz, Reyna Susana & López Herrera, Francisco & Cruz Aké, Salvador, 2018. "Determinantes del crédito y la morosidad en México / Determinants of credit and defaulting in Mexico," Estocástica: finanzas y riesgo, Departamento de Administración de la Universidad Autónoma Metropolitana Unidad Azcapotzalco, vol. 8(1), pages 85-104, enero-jun.
    17. Ji, Qiang & Fan, Ying, 2016. "Evolution of the world crude oil market integration: A graph theory analysis," Energy Economics, Elsevier, vol. 53(C), pages 90-100.
    18. Wang, Jianli & Qiu, Shushu & Yick, Ho Yin, 2022. "The influence of the Shanghai crude oil futures on the global and domestic oil markets," Energy, Elsevier, vol. 245(C).
    19. Luo, Jiawen & Ji, Qiang & Klein, Tony & Todorova, Neda & Zhang, Dayong, 2020. "On realized volatility of crude oil futures markets: Forecasting with exogenous predictors under structural breaks," Energy Economics, Elsevier, vol. 89(C).
    20. Figuerola-Ferretti, Isabel & McCrorie, J. Roderick & Paraskevopoulos, Ioannis, 2020. "Mild explosivity in recent crude oil prices," Energy Economics, Elsevier, vol. 87(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544221002991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.