IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v222y2021ics0360544221002516.html
   My bibliography  Save this article

Synthesis of biomimetic monolithic biochar-based catalysts for catalytic decomposition of biomass pyrolysis tar

Author

Listed:
  • Tian, Beile
  • Du, Shilin
  • Guo, Feiqiang
  • Dong, Yichen
  • Mao, Songbo
  • Qian, Lin
  • Liu, Qi

Abstract

Catalytic reforming of tar is an urgent technique for fuel gas production from biomass. In this paper, using monolith pinewood as the raw material, biomimetic monolithic biochar-based catalysts with the inherited 3D porous structure were prepared via simple impregnation and carbonization to explore their catalytic performance on biomass pyrolysis tar decomposition. Regular flow-through channels (20–50 μm) were achieved in the axial direction of the catalysts with irregular pores in the cross direction. High-density and well-dispersed Ni0 nanoparticles were formed and encapsulated on the wall of channels by in-situ reactions during biomass carbonization. The channels ensured the quick passing through of the gas flow and thus the diffusion steps could be effectively reduced, thereby reducing the coke deposition and aggregation of Ni particles. Based on their unique structure, the catalysts exhibited high activity and good stability for the biomass tar decomposition. At 800 °C, the catalyst (PC@0.3Ni) reached a high tar conversion of over 92% with excellent stability during five consecutive tests, leading to a higher yield of the product gas, especially the yields of H2 and CO. The distribution of Ni nanoparticles on the spent PC@0.3Ni was almost the same as the fresh catalyst with a similar particle size range.

Suggested Citation

  • Tian, Beile & Du, Shilin & Guo, Feiqiang & Dong, Yichen & Mao, Songbo & Qian, Lin & Liu, Qi, 2021. "Synthesis of biomimetic monolithic biochar-based catalysts for catalytic decomposition of biomass pyrolysis tar," Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002516
    DOI: 10.1016/j.energy.2021.120002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221002516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Duo & Yuan, Wenqiao & Ji, Wei, 2011. "Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning," Applied Energy, Elsevier, vol. 88(5), pages 1656-1663, May.
    2. Shen, Yafei & Yoshikawa, Kunio, 2013. "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 371-392.
    3. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    4. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Li & Yao, Zonglu & Zhao, Lixin & Li, Zhihe & Yi, Weiming & Kang, Kang & Jia, Jixiu, 2021. "Synthesis and characterization of different activated biochar catalysts for removal of biomass pyrolysis tar," Energy, Elsevier, vol. 232(C).
    2. Lin, Qunqing & Zhang, Shuping & Wang, Jiaxing & Yin, Haoxin, 2021. "Synthesis of modified char-supported Ni–Fe catalyst with hierarchical structure for catalytic cracking of biomass tar," Renewable Energy, Elsevier, vol. 174(C), pages 188-198.
    3. Dong, Yichen & Mao, Songbo & Guo, Feiqiang & Shu, Rui & Bai, Jiaming & Qian, Lin & Bai, Yonghui, 2022. "Coal gasification fine slags: Investigation of the potential as both microwave adsorbers and catalysts in microwave-induced biomass pyrolysis applications," Energy, Elsevier, vol. 238(PB).
    4. Li, Xueqin & Liu, Peng & Lei, Tingzhou & Wu, Youqing & Chen, Wenxuan & Wang, Zhiwei & Shi, Jie & Wu, Shiyong & Li, Yanling & Huang, Sheng, 2022. "Pyrolysis of biomass Tar model compound with various Ni-based catalysts: Influence of promoters characteristics on hydrogen-rich gas formation," Energy, Elsevier, vol. 244(PB).
    5. Guo, Feiqiang & Qiao, Qixia & Mao, Songbo & Bai, Jiaming & Dong, Kaiming & Shu, Rui & Xu, Liya & Wei, Haixiao & Qian, Lin & Wang, Yunpu, 2023. "A comprehensive study on the pyrolysis behavior of pine sawdust catalyzed by different metal ions under conventional and microwave heating conditions," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Fu-Xiang & Yang, Guo-Hua & Ding, Guo-Zhu & Li, Zhen & Du, Ka-Shuai & Hu, Zhi-Fa & Tian, Su-Rui, 2016. "Experimental study on catalytic cracking of model tar compounds in a dual layer granular bed filter," Applied Energy, Elsevier, vol. 170(C), pages 47-57.
    2. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    3. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    4. Li, Jian & Jiao, Liguo & Tao, Junyu & Chen, Guanyi & Hu, Jianli & Yan, Beibei & Mansour, Mohy & Guo, Yaoyu & Ye, Peiwen & Ding, Zheng & Yu, Tianxiao, 2020. "Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis," Applied Energy, Elsevier, vol. 272(C).
    5. Shen, Yafei, 2015. "Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 281-295.
    6. Al-Rahbi, Amal S. & Williams, Paul T., 2017. "Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char," Applied Energy, Elsevier, vol. 190(C), pages 501-509.
    7. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    8. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    9. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    10. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    11. Chen, Guanyi & Dong, Xiaoshan & Yan, Beibei & Li, Jian & Yoshikawa, Kunio & Jiao, Liguo, 2022. "Photothermal steam reforming: A novel method for tar elimination in biomass gasification," Applied Energy, Elsevier, vol. 305(C).
    12. Fernandez, Enara & Santamaria, Laura & Amutio, Maider & Artetxe, Maite & Arregi, Aitor & Lopez, Gartzen & Bilbao, Javier & Olazar, Martin, 2022. "Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor," Energy, Elsevier, vol. 238(PC).
    13. Qian, Kezhen & Kumar, Ajay & Zhang, Hailin & Bellmer, Danielle & Huhnke, Raymond, 2015. "Recent advances in utilization of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1055-1064.
    14. Chan, Fan Liang & Tanksale, Akshat, 2014. "Review of recent developments in Ni-based catalysts for biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 428-438.
    15. Li, Xueqin & Liu, Peng & Lei, Tingzhou & Wu, Youqing & Chen, Wenxuan & Wang, Zhiwei & Shi, Jie & Wu, Shiyong & Li, Yanling & Huang, Sheng, 2022. "Pyrolysis of biomass Tar model compound with various Ni-based catalysts: Influence of promoters characteristics on hydrogen-rich gas formation," Energy, Elsevier, vol. 244(PB).
    16. Bendoni, R. & Miccio, F. & Medri, V. & Benito, P. & Vaccari, A. & Landi, E., 2019. "Geopolymer composites for the catalytic cleaning of tar in biomass-derived gas," Renewable Energy, Elsevier, vol. 131(C), pages 1107-1116.
    17. Se-Won Park & Sang-Yeop Lee & Yean-Ouk Jeong & Gun-Ho Han & Yong-Chil Seo, 2018. "Effects of Oxygen Enrichment in Air Oxidants on Biomass Gasification Efficiency and the Reduction of Tar Emissions," Energies, MDPI, vol. 11(10), pages 1-13, October.
    18. Sun, Jing & Wang, Qing & Wang, Wenlong & Wang, Ke, 2018. "Study on the synergism of steam reforming and photocatalysis for the degradation of Toluene as a tar model compound under microwave-metal discharges," Energy, Elsevier, vol. 155(C), pages 815-823.
    19. Cheng, Long & Wu, Zhiqiang & Zhang, Zhiguo & Guo, Changqing & Ellis, Naoko & Bi, Xiaotao & Paul Watkinson, A. & Grace, John R., 2020. "Tar elimination from biomass gasification syngas with bauxite residue derived catalysts and gasification char," Applied Energy, Elsevier, vol. 258(C).
    20. Nakamura, Shunsuke & Kitano, Shigeru & Yoshikawa, Kunio, 2016. "Biomass gasification process with the tar removal technologies utilizing bio-oil scrubber and char bed," Applied Energy, Elsevier, vol. 170(C), pages 186-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.