Entropy and enthalpy changes during adsorption and displacement of shale gas
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.119854
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Qiang & Li, Rongrong, 2017. "Research status of shale gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 715-720.
- Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
- Zhu, Hongjian & Ju, Yiwen & Huang, Cheng & Chen, Fangwen & Chen, Bozhen & Yu, Kun, 2020. "Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale," Energy, Elsevier, vol. 197(C).
- J. David Hughes, 2013. "A reality check on the shale revolution," Nature, Nature, vol. 494(7437), pages 307-308, February.
- Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shan, Baochao & Wang, Runxi & Guo, Zhaoli & Wang, Peng, 2021. "Contribution quantification of nanoscale gas transport in shale based on strongly inhomogeneous kinetic model," Energy, Elsevier, vol. 228(C).
- Noushabadi, Abolfazl Sajadi & Lay, Ebrahim Nemati & Dashti, Amir & Mohammadi, Amir H. & Chofreh, Abdoulmohammad Gholamzadeh & Goni, Feybi Ariani & Klemeš, Jiří Jaromír, 2023. "Insights into modelling and evaluation of thermodynamic and transport properties of refrigerants using machine-learning methods," Energy, Elsevier, vol. 262(PA).
- Huang, Xianfu & Zhao, Ya-Pu, 2023. "Evolution of pore structure and adsorption-desorption in oil shale formation rocks after compression," Energy, Elsevier, vol. 278(PA).
- Sun, Fuqiang & Du, Shuheng & Zhao, Ya-Pu, 2022. "Fluctuation of fracturing curves indicates in-situ brittleness and reservoir fracturing characteristics in unconventional energy exploitation," Energy, Elsevier, vol. 252(C).
- Xu, HengYu & Yu, Hao & Fan, JingCun & Xia, Jun & Liu, He & Wu, HengAn, 2022. "Formation mechanism and structural characteristic of pore-networks in shale kerogen during in-situ conversion process," Energy, Elsevier, vol. 242(C).
- Gao, Zheng & Li, Bobo & Li, Jianhua & Jia, Lidan & Wang, Zhonghui, 2023. "Adsorption characteristics and thermodynamic analysis of shale in northern Guizhou, China: Measurement, modeling and prediction," Energy, Elsevier, vol. 262(PA).
- Xie, Weidong & Wang, Hua & Vandeginste, Veerle & Chen, Si & Gan, Huajun & Wang, Meng & Yu, Zhenghong, 2023. "Thermodynamic and kinetic affinity of CO2 relative to CH4 and their pressure, temperature and pore structure sensitivity in the competitive adsorption system in shale gas reservoirs," Energy, Elsevier, vol. 277(C).
- Guang, Wenfeng & Zhang, Zhenyu & Zhang, Lei & Ranjith, P.G. & Hao, Shengpeng & Liu, Xiaoqian, 2023. "Confinement effect on transport diffusivity of adsorbed CO2–CH4 mixture in coal nanopores for CO2 sequestration and enhanced CH4 recovery," Energy, Elsevier, vol. 278(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
- An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
- Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
- Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
- Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
- An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Zhang, Xiao, 2022. "Experimental study on alteration kinetics for predicting rock mechanics damage caused by SC-CO2," Energy, Elsevier, vol. 259(C).
- Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
- Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
- Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
- Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
- Zhao, Weizhong & Su, Xianbo & Xia, Daping & Hou, Shihui & Wang, Qian & Zhou, Yixuan, 2022. "Enhanced coalbed methane recovery by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion," Energy, Elsevier, vol. 259(C).
- Rongrong Li & Min Su, 2017. "The Role of Natural Gas and Renewable Energy in Curbing Carbon Emission: Case Study of the United States," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
- Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
- Wang, Qiang & Song, Xiaoxing & Li, Rongrong, 2018. "A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production," Energy, Elsevier, vol. 165(PB), pages 1320-1331.
- Mohamed Mehana & Qinjun Kang & Hari Viswanathan, 2020. "Molecular-Scale Considerations of Enhanced Oil Recovery in Shale," Energies, MDPI, vol. 13(24), pages 1-13, December.
- Mohammad H. Bhuiyan & Nicolaine Agofack & Kamila M. Gawel & Pierre R. Cerasi, 2020. "Micro- and Macroscale Consequences of Interactions between CO 2 and Shale Rocks," Energies, MDPI, vol. 13(5), pages 1-30, March.
- Ahmed Fatah & Ziad Bennour & Hisham Ben Mahmud & Raoof Gholami & Md. Mofazzal Hossain, 2020. "A Review on the Influence of CO 2 /Shale Interaction on Shale Properties: Implications of CCS in Shales," Energies, MDPI, vol. 13(12), pages 1-27, June.
- Jie Zhang & Xizhe Li & Weijun Shen & Shusheng Gao & Huaxun Liu & Liyou Ye & Feifei Fang, 2020. "Study of the Effect of Movable Water Saturation on Gas Production in Tight Sandstone Gas Reservoirs," Energies, MDPI, vol. 13(18), pages 1-14, September.
- Filip Simeski & Matthias Ihme, 2023. "Supercritical fluids behave as complex networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Weiqiang Song & Hongjian Ni & Ruihe Wang & Mengyun Zhao, 2017. "Wellbore flow field of coiled tubing drilling with supercritical carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 745-755, August.
More about this item
Keywords
Shale gas; Adsorption/displacement; Entropy change; Enthalpy change; Statistical mechanics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001031. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.